summaryrefslogtreecommitdiffstats
path: root/gptsync/gptsync.c
blob: 8de9b80932ac8820cbe43b48cb22573748eb7063 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
/*
 * gptsync/gptsync.c
 * Platform-independent code for syncing GPT and MBR
 *
 * Copyright (c) 2006 Christoph Pfisterer
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the
 *    distribution.
 *
 *  * Neither the name of Christoph Pfisterer nor the names of the
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "gptsync.h"

#include "syslinux_mbr.h"

// types

typedef struct {
    UINT8   flags;
    UINT8   start_chs[3];
    UINT8   type;
    UINT8   end_chs[3];
    UINT32  start_lba;
    UINT32  size;
} MBR_PARTITION_INFO;

typedef struct {
    UINT8   type;
    CHARN   *name;
} MBR_PARTTYPE;

typedef struct {
    UINT64  signature;
    UINT32  spec_revision;
    UINT32  header_size;
    UINT32  header_crc32;
    UINT32  reserved;
    UINT64  header_lba;
    UINT64  alternate_header_lba;
    UINT64  first_usable_lba;
    UINT64  last_usable_lba;
    UINT8   disk_guid[16];
    UINT64  entry_lba;
    UINT32  entry_count;
    UINT32  entry_size;
    UINT32  entry_crc32;
} GPT_HEADER;

typedef struct {
    UINT8   type_guid[16];
    UINT8   partition_guid[16];
    UINT64  start_lba;
    UINT64  end_lba;
    UINT64  attributes;
    CHAR16  name[36];
} GPT_ENTRY;

#define GPT_KIND_SYSTEM     (0)
#define GPT_KIND_DATA       (1)
#define GPT_KIND_BASIC_DATA (2)
#define GPT_KIND_FATAL      (3)

typedef struct {
    UINT8   guid[16];
    UINT8   mbr_type;
    CHARN   *name;
    UINTN   kind;
} GPT_PARTTYPE;

typedef struct {
    UINTN   index;
    UINT64  start_lba;
    UINT64  end_lba;
    UINTN   mbr_type;
    UINT8   gpt_type[16];
    GPT_PARTTYPE *gpt_parttype;
    BOOLEAN active;
} PARTITION_INFO;

// variables

UINT8           empty_guid[16] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };

PARTITION_INFO  mbr_parts[4];
UINTN           mbr_part_count = 0;
PARTITION_INFO  gpt_parts[128];
UINTN           gpt_part_count = 0;

PARTITION_INFO  new_mbr_parts[4];
UINTN           new_mbr_part_count = 0;

UINT8           sector[512];

MBR_PARTTYPE    mbr_types[] = {
    { 0x01, STR("FAT12") },
    { 0x04, STR("FAT16 <32M") },
    { 0x05, STR("DOS Extended") },
    { 0x06, STR("FAT16") },
    { 0x07, STR("NTFS") },
    { 0x0b, STR("FAT32") },
    { 0x0c, STR("FAT32 (LBA)") },
    { 0x0e, STR("FAT16 (LBA)") },
    { 0x0f, STR("Win95 Extended (LBA)") },
    { 0x11, STR("Hidden FAT12") },
    { 0x14, STR("Hidden FAT16 <32M") },
    { 0x16, STR("Hidden FAT16") },
    { 0x17, STR("Hidden NTFS") },
    { 0x1b, STR("Hidden FAT32") },
    { 0x1c, STR("Hidden FAT32 (LBA)") },
    { 0x1e, STR("Hidden FAT16 (LBA)") },
    { 0x82, STR("Linux swap / Solaris") },
    { 0x83, STR("Linux") },
    { 0x85, STR("Linux Extended") },
    { 0x86, STR("NTFS volume set") },
    { 0x87, STR("NTFS volume set") },
    { 0x8e, STR("Linux LVM") },
    { 0xa5, STR("FreeBSD") },
    { 0xa6, STR("OpenBSD") },
    { 0xa7, STR("NeXTSTEP") },
    { 0xa9, STR("NetBSD") },
    { 0xaf, STR("Mac OS X HFS+") },
    { 0xeb, STR("BeOS") },
    { 0xee, STR("EFI Protective") },
    { 0xef, STR("EFI System (FAT)") },
    { 0xfd, STR("Linux RAID") },
    { 0, NULL },
};

GPT_PARTTYPE    gpt_types[] = {
    { "\x28\x73\x2A\xC1\x1F\xF8\xD2\x11\xBA\x4B\x00\xA0\xC9\x3E\xC9\x3B", 0xef, STR("EFI System (FAT)"), GPT_KIND_SYSTEM },
    { "\x41\xEE\x4D\x02\xE7\x33\xD3\x11\x9D\x69\x00\x08\xC7\x81\xF3\x9F", 0x00, STR("MBR partition scheme"), GPT_KIND_FATAL },
    { "\x16\xE3\xC9\xE3\x5C\x0B\xB8\x4D\x81\x7D\xF9\x2D\xF0\x02\x15\xAE", 0x00, STR("MS Reserved"), GPT_KIND_SYSTEM },
    { "\xA2\xA0\xD0\xEB\xE5\xB9\x33\x44\x87\xC0\x68\xB6\xB7\x26\x99\xC7", 0x00, STR("Basic Data"), GPT_KIND_BASIC_DATA },
    { "\xAA\xC8\x08\x58\x8F\x7E\xE0\x42\x85\xD2\xE1\xE9\x04\x34\xCF\xB3", 0x00, STR("MS LDM Metadata"), GPT_KIND_FATAL },
    { "\xA0\x60\x9B\xAF\x31\x14\x62\x4F\xBC\x68\x33\x11\x71\x4A\x69\xAD", 0x00, STR("MS LDM Data"), GPT_KIND_FATAL },
    { "\x0F\x88\x9D\xA1\xFC\x05\x3B\x4D\xA0\x06\x74\x3F\x0F\x84\x91\x1E", 0xfd, STR("Linux RAID"), GPT_KIND_DATA },
    { "\x6D\xFD\x57\x06\xAB\xA4\xC4\x43\x84\xE5\x09\x33\xC8\x4B\x4F\x4F", 0x82, STR("Linux Swap"), GPT_KIND_DATA },
    { "\x79\xD3\xD6\xE6\x07\xF5\xC2\x44\xA2\x3C\x23\x8F\x2A\x3D\xF9\x28", 0x8e, STR("Linux LVM"), GPT_KIND_DATA },
    { "\x39\x33\xA6\x8D\x07\x00\xC0\x60\xC4\x36\x08\x3A\xC8\x23\x09\x08", 0x00, STR("Linux Reserved"), GPT_KIND_SYSTEM },
    { "\x00\x53\x46\x48\x00\x00\xAA\x11\xAA\x11\x00\x30\x65\x43\xEC\xAC", 0xaf, STR("Mac OS X HFS+"), GPT_KIND_DATA },
    { { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, 0, NULL, 0 },
};
GPT_PARTTYPE    gpt_dummy_type =
    { { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, 0, STR("Unknown"), GPT_KIND_FATAL };

//
// MBR functions
//

static CHARN * mbr_parttype_name(UINT8 type)
{
    int i;
    
    for (i = 0; mbr_types[i].name; i++)
        if (mbr_types[i].type == type)
            return mbr_types[i].name;
    return STR("Unknown");
}

static UINTN read_mbr(VOID)
{
    UINTN               status;
    UINTN               i;
    BOOLEAN             used;
    MBR_PARTITION_INFO  *table;
    
    Print(L"\nCurrent MBR partition table:\n");
    
    // read MBR data
    status = read_sector(0, sector);
    if (status != 0)
        return status;
    
    // check for validity
    if (*((UINT16 *)(sector + 510)) != 0xaa55) {
        Print(L" No MBR partition table present!\n");
        return 1;
    }
    table = (MBR_PARTITION_INFO *)(sector + 446);
    for (i = 0; i < 4; i++) {
        if (table[i].flags != 0x00 && table[i].flags != 0x80) {
            Print(L" MBR partition table is invalid!\n");
            return 1;
        }
    }
    
    // check if used
    used = FALSE;
    for (i = 0; i < 4; i++) {
        if (table[i].start_lba > 0 && table[i].size > 0) {
            used = TRUE;
            break;
        }
    }
    if (!used) {
        Print(L" No partitions defined\n");
        return 0;
    }
    
    // dump current state & fill internal structures
    Print(L" # A    Start LBA      End LBA  Type\n");
    for (i = 0; i < 4; i++) {
        if (table[i].start_lba == 0 || table[i].size == 0)
            continue;
        
        mbr_parts[mbr_part_count].index     = i;
        mbr_parts[mbr_part_count].start_lba = (UINT64)table[i].start_lba;
        mbr_parts[mbr_part_count].end_lba   = (UINT64)table[i].start_lba + (UINT64)table[i].size - 1;
        mbr_parts[mbr_part_count].mbr_type  = table[i].type;
        mbr_parts[mbr_part_count].active    = (table[i].flags == 0x80) ? TRUE : FALSE;
        
        Print(L" %d %s %12lld %12lld  %02x  %s\n",
              mbr_parts[mbr_part_count].index + 1,
              mbr_parts[mbr_part_count].active ? STR("*") : STR(" "),
              mbr_parts[mbr_part_count].start_lba,
              mbr_parts[mbr_part_count].end_lba,
              mbr_parts[mbr_part_count].mbr_type,
              mbr_parttype_name(mbr_parts[mbr_part_count].mbr_type));
        
        mbr_part_count++;
    }
    
    return 0;
}

static UINTN check_mbr(VOID)
{
    UINTN       i, k;
    
    // check each entry
    for (i = 0; i < mbr_part_count; i++) {
        // check for overlap
        for (k = 0; k < mbr_part_count; k++) {
            if (k != i && !(mbr_parts[i].start_lba > mbr_parts[k].end_lba || mbr_parts[k].start_lba > mbr_parts[i].end_lba)) {
                Print(L"Status: MBR partition table is invalid, partitions overlap.\n");
                return 1;
            }
        }
        
        // check for extended partitions
        if (mbr_parts[i].mbr_type == 0x05 || mbr_parts[i].mbr_type == 0x0f || mbr_parts[i].mbr_type == 0x85) {
            Print(L"Status: Extended partition found in MBR table, will not touch this disk.\n",
                  gpt_parts[i].gpt_parttype->name);
            return 1;
        }
    }
    
    return 0;
}

static UINTN write_mbr(VOID)
{
    UINTN               status;
    UINTN               i, k;
    UINT8               active;
    UINT64              lba;
    MBR_PARTITION_INFO  *table;
    BOOLEAN             have_bootcode;
    
    Print(L"\nWriting new MBR...\n");
    
    // read MBR data
    status = read_sector(0, sector);
    if (status != 0)
        return status;
    
    // write partition table
    *((UINT16 *)(sector + 510)) = 0xaa55;
    
    table = (MBR_PARTITION_INFO *)(sector + 446);
    active = 0x80;
    for (i = 0; i < 4; i++) {
        for (k = 0; k < new_mbr_part_count; k++) {
            if (new_mbr_parts[k].index == i)
                break;
        }
        if (k >= new_mbr_part_count) {
            // unused entry
            table[i].flags        = 0;
            table[i].start_chs[0] = 0;
            table[i].start_chs[1] = 0;
            table[i].start_chs[2] = 0;
            table[i].type         = 0;
            table[i].end_chs[0]   = 0;
            table[i].end_chs[1]   = 0;
            table[i].end_chs[2]   = 0;
            table[i].start_lba    = 0;
            table[i].size         = 0;
        } else {
            if (new_mbr_parts[k].active) {
                table[i].flags        = active;
                active = 0x00;
            } else
                table[i].flags        = 0x00;
            table[i].start_chs[0] = 0xfe;
            table[i].start_chs[1] = 0xff;
            table[i].start_chs[2] = 0xff;
            table[i].type         = new_mbr_parts[k].mbr_type;
            table[i].end_chs[0]   = 0xfe;
            table[i].end_chs[1]   = 0xff;
            table[i].end_chs[2]   = 0xff;
            
            lba = new_mbr_parts[k].start_lba;
            if (lba > 0xffffffffULL) {
                Print(L"Warning: Partition %d starts beyond 2 TiB limit\n", i+1);
                lba = 0xffffffffULL;
            }
            table[i].start_lba    = (UINT32)lba;
            
            lba = new_mbr_parts[k].end_lba + 1 - new_mbr_parts[k].start_lba;
            if (lba > 0xffffffffULL) {
                Print(L"Warning: Partition %d extends beyond 2 TiB limit\n", i+1);
                lba = 0xffffffffULL;
            }
            table[i].size         = (UINT32)lba;
        }
    }
    
    // add boot code if necessary
    have_bootcode = FALSE;
    for (i = 0; i < MBR_BOOTCODE_SIZE; i++) {
        if (sector[i] != 0) {
            have_bootcode = TRUE;
            break;
        }
    }
    if (!have_bootcode) {
        Print(L"Writing boot code to MBR\n");
        // no boot code found in the MBR, add the syslinux MBR code
        SetMem(sector, MBR_BOOTCODE_SIZE, 0);
        CopyMem(sector, syslinux_mbr, SYSLINUX_MBR_SIZE);
    }
    
    // write MBR data
    status = write_sector(0, sector);
    if (status != 0)
        return status;
    
    Print(L"MBR updated successfully!\n");
    
    return 0;
}

//
// GPT functions
//

static GPT_PARTTYPE * gpt_parttype(UINT8 *type_guid)
{
    int i;
    
    for (i = 0; gpt_types[i].name; i++)
        if (guids_are_equal(gpt_types[i].guid, type_guid))
            return &(gpt_types[i]);
    return &gpt_dummy_type;
}

static UINTN read_gpt(VOID)
{
    UINTN       status;
    GPT_HEADER  *header;
    GPT_ENTRY   *entry;
    UINT64      entry_lba;
    UINTN       entry_count, entry_size, i;
    
    Print(L"\nCurrent GPT partition table:\n");
    
    // read GPT header
    status = read_sector(1, sector);
    if (status != 0)
        return status;
    
    // check signature
    header = (GPT_HEADER *)sector;
    if (header->signature != 0x5452415020494645ULL) {
        Print(L" No GPT partition table present!\n");
        return 0;
    }
    if (header->spec_revision != 0x00010000UL) {
        Print(L" Warning: Unknown GPT spec revision 0x%08x\n", header->spec_revision);
    }
    if ((512 % header->entry_size) > 0 || header->entry_size > 512) {
        Print(L" Error: Invalid GPT entry size (misaligned or more than 512 bytes)\n");
        return 0;
    }
    
    // read entries
    entry_lba   = header->entry_lba;
    entry_size  = header->entry_size;
    entry_count = header->entry_count;
    
    Print(L" #      Start LBA      End LBA  Type\n");
    for (i = 0; i < entry_count; i++) {
        if (((i * entry_size) % 512) == 0) {
            status = read_sector(entry_lba, sector);
            if (status != 0)
                return status;
            entry_lba++;
        }
        entry = (GPT_ENTRY *)(sector + ((i * entry_size) % 512));
        
        if (guids_are_equal(entry->type_guid, empty_guid))
            continue;
        
        gpt_parts[gpt_part_count].index     = i;
        gpt_parts[gpt_part_count].start_lba = entry->start_lba;
        gpt_parts[gpt_part_count].end_lba   = entry->end_lba;
        gpt_parts[gpt_part_count].mbr_type  = 0;
        copy_guid(gpt_parts[gpt_part_count].gpt_type, entry->type_guid);
        gpt_parts[gpt_part_count].gpt_parttype = gpt_parttype(gpt_parts[gpt_part_count].gpt_type);
        gpt_parts[gpt_part_count].active    = FALSE;
        
        Print(L" %d   %12lld %12lld  %s\n",
              gpt_parts[gpt_part_count].index + 1,
              gpt_parts[gpt_part_count].start_lba,
              gpt_parts[gpt_part_count].end_lba,
              gpt_parts[gpt_part_count].gpt_parttype->name);
        
        gpt_part_count++;
    }
    
    return 0;
}

static UINTN check_gpt(VOID)
{
    UINTN       i, k;
    BOOLEAN     found_data_parts;
    
    if (gpt_part_count == 0) {
        Print(L"Status: No GPT partition table, no need to sync.\n");
        return 1;
    }
    
    // check each entry
    found_data_parts = FALSE;
    for (i = 0; i < gpt_part_count; i++) {
        // check sanity
        if (gpt_parts[i].end_lba < gpt_parts[i].start_lba) {
            Print(L"Status: GPT partition table is invalid.\n");
            return 1;
        }
        // check for overlap
        for (k = 0; k < gpt_part_count; k++) {
            if (k != i && !(gpt_parts[i].start_lba > gpt_parts[k].end_lba || gpt_parts[k].start_lba > gpt_parts[i].end_lba)) {
                Print(L"Status: GPT partition table is invalid, partitions overlap.\n");
                return 1;
            }
        }
        
        // check for partitions kind
        if (gpt_parts[i].gpt_parttype->kind == GPT_KIND_FATAL) {
            Print(L"Status: GPT partition of type '%s' found, will not touch this disk.\n",
                  gpt_parts[i].gpt_parttype->name);
            return 1;
        }
        if (gpt_parts[i].gpt_parttype->kind == GPT_KIND_DATA ||
            gpt_parts[i].gpt_parttype->kind == GPT_KIND_BASIC_DATA)
            found_data_parts = TRUE;
    }
    
    if (!found_data_parts) {
        Print(L"Status: GPT partition table has no data partitions, no need to sync.\n");
        return 1;
    }
    
    return 0;
}

//
// compare GPT and MBR tables
//

#define ACTION_NONE        (0)
#define ACTION_NOP         (1)
#define ACTION_REWRITE     (2)

static UINTN analyze(VOID)
{
    UINTN   action = ACTION_NONE;
    UINTN   i, k, iter;
    UINT64  min_start_lba;
    BOOLEAN have_active;
    
    new_mbr_part_count = 0;
    
    // check for common scenarios
    if (mbr_part_count == 0) {
        // current MBR is empty
        action = ACTION_REWRITE;
    } else if (mbr_part_count == 1 && mbr_parts[0].mbr_type == 0xee) {
        // MBR has just the EFI Protective partition (i.e. untouched)
        action = ACTION_REWRITE;
    }
    if (action == ACTION_NONE && mbr_part_count > 0) {
        if (mbr_parts[0].mbr_type == 0xee &&
            gpt_parts[0].gpt_parttype->mbr_type == 0xef &&
            mbr_parts[0].start_lba == 1 &&
            mbr_parts[0].end_lba == gpt_parts[0].end_lba) {
            // The Apple Way, "EFI Protective" covering the tables and the ESP
            action = ACTION_NOP;
            if ((mbr_part_count != gpt_part_count && gpt_part_count <= 4) ||
                (mbr_part_count != 4              && gpt_part_count > 4)) {
                // number of partitions has changed
                action = ACTION_REWRITE;
            } else {
                // check partition ranges and types
                for (i = 1; i < mbr_part_count; i++) {
                    if (mbr_parts[i].start_lba != gpt_parts[i].start_lba ||
                        mbr_parts[i].end_lba   != gpt_parts[i].end_lba ||
                        (gpt_parts[i].gpt_parttype->mbr_type && mbr_parts[i].mbr_type != gpt_parts[i].gpt_parttype->mbr_type))
                        // position or type has changed
                        action = ACTION_REWRITE;
                }
            }
        }
    }
    if (action == ACTION_NONE && mbr_part_count > 0 && mbr_parts[0].mbr_type == 0xef) {
        // The XOM Way, all partitions mirrored 1:1
        action = ACTION_REWRITE;
        // check partition ranges and types
        for (i = 0; i < mbr_part_count; i++) {
            if (mbr_parts[i].start_lba != gpt_parts[i].start_lba ||
                mbr_parts[i].end_lba   != gpt_parts[i].end_lba ||
                (gpt_parts[i].gpt_parttype->mbr_type && mbr_parts[i].mbr_type != gpt_parts[i].gpt_parttype->mbr_type))
                // position or type has changed -> better don't touch
                action = ACTION_NONE;
        }
    }
    
    if (action == ACTION_NOP) {
        Print(L"Status: Tables are synchronized, no need to sync.\n");
        return 0;
    } else if (action == ACTION_REWRITE) {
        Print(L"Status: MBR table must be updated.\n");
    } else {
        Print(L"Status: Analysis inconclusive, will not touch this disk.\n");
        return 1;
    }
    
    // generate the new table
    
    // first entry: EFI Protective
    new_mbr_parts[0].index     = 0;
    new_mbr_parts[0].start_lba = 1;
    new_mbr_parts[0].mbr_type  = 0xee;
    new_mbr_part_count = 1;
    
    if (gpt_parts[0].gpt_parttype->mbr_type == 0xef) {
        new_mbr_parts[0].end_lba = gpt_parts[0].end_lba;
        i = 1;
    } else {
        min_start_lba = gpt_parts[0].start_lba;
        for (k = 0; k < gpt_part_count; k++) {
            if (min_start_lba > gpt_parts[k].start_lba)
                min_start_lba = gpt_parts[k].start_lba;
        }
        new_mbr_parts[0].end_lba = min_start_lba - 1;
        i = 0;
    }
    
    // add other GPT partitions until the table is full
    for (; i < gpt_part_count && new_mbr_part_count < 4; i++) {
        new_mbr_parts[new_mbr_part_count].index     = new_mbr_part_count;
        new_mbr_parts[new_mbr_part_count].start_lba = gpt_parts[i].start_lba;
        new_mbr_parts[new_mbr_part_count].end_lba   = gpt_parts[i].end_lba;
        new_mbr_parts[new_mbr_part_count].mbr_type  = gpt_parts[i].gpt_parttype->mbr_type;
        new_mbr_parts[new_mbr_part_count].active    = FALSE;
        
        // find matching partition in the old MBR table
        for (k = 0; k < mbr_part_count; k++) {
            if (mbr_parts[k].start_lba == gpt_parts[i].start_lba) {
                if (new_mbr_parts[new_mbr_part_count].mbr_type == 0)
                    new_mbr_parts[new_mbr_part_count].mbr_type = mbr_parts[k].mbr_type;
                new_mbr_parts[new_mbr_part_count].active = mbr_parts[k].active;
                break;
            }
        }
        
        if (new_mbr_parts[new_mbr_part_count].mbr_type == 0) {
            // TODO: detect the actual file system on the partition
            
            // fallback: use linux native
            //if (gpt_parts[i].gpt_parttype->kind == GPT_KIND_BASIC_DATA) {
            new_mbr_parts[new_mbr_part_count].mbr_type = 0x83;
        }
        
        new_mbr_part_count++;
    }
    
    // if no partition is active, pick one
    for (iter = 0; iter < 3; iter++) {
        // check
        have_active = FALSE;
        for (i = 0; i < new_mbr_part_count; i++)
            if (new_mbr_parts[i].active)
                have_active = TRUE;
        if (have_active)
            break;
        
        // set active on the first matching partition
        for (i = 0; i < new_mbr_part_count; i++) {
            if ((iter >= 0 && (new_mbr_parts[i].mbr_type == 0x07 ||
                               new_mbr_parts[i].mbr_type == 0x0b ||
                               new_mbr_parts[i].mbr_type == 0x0c)) ||
                (iter >= 1 && (new_mbr_parts[i].mbr_type == 0x83)) ||
                (iter >= 2 && i > 0)) {
                new_mbr_parts[i].active = TRUE;
                break;
            }
        }
    }
    
    // dump table
    Print(L"\nProposed new MBR partition table:\n");
    Print(L" # A    Start LBA      End LBA  Type\n");
    for (i = 0; i < new_mbr_part_count; i++) {
        Print(L" %d %s %12lld %12lld  %02x  %s\n",
              new_mbr_parts[i].index + 1,
              new_mbr_parts[i].active ? STR("*") : STR(" "),
              new_mbr_parts[i].start_lba,
              new_mbr_parts[i].end_lba,
              new_mbr_parts[i].mbr_type,
              mbr_parttype_name(new_mbr_parts[i].mbr_type));
    }
    
    return 0;
}

//
// sync algorithm entry point
//

UINTN gptsync(VOID)
{
    UINTN   status = 0;
    UINTN   status_gpt, status_mbr;
    //    BOOLEAN proceed = FALSE;
    
    // get full information from disk
    status_gpt = read_gpt();
    status_mbr = read_mbr();
    if (status_gpt != 0 || status_mbr != 0)
        return (status_gpt || status_mbr);
    
    // cross-check current situation
    Print(L"\n");
    status = check_gpt();   // check GPT for consistency
    if (status != 0)
        return status;
    status = check_mbr();   // check MBR for consistency
    if (status != 0)
        return status;
    status = analyze();     // analyze the situation
    if (status != 0)
        return status;
    if (new_mbr_part_count == 0)
        return status;
    
    // offer user the choice what to do
    //    status = input_boolean(STR("\nMay I update the MBR as printed above? [y/N] "), &proceed);
    //    if (status != 0 || proceed != TRUE)
    //        return status;
    
    // adjust the MBR and write it back
    status = write_mbr();
    if (status != 0)
        return status;
    
    return status;
}