/* * Linux-specific portion of Broadcom 802.11abg Networking Device Driver * cfg80211 interface * * Copyright (C) 2015, Broadcom Corporation. All Rights Reserved. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $Id: wl_cfg80211.c,v 1.1.6.4 2011-02-11 00:22:09 $ */ #if defined(USE_CFG80211) #define LINUX_PORT #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define EVENT_TYPE(e) dtoh32((e)->event_type) #define EVENT_FLAGS(e) dtoh16((e)->flags) #define EVENT_STATUS(e) dtoh32((e)->status) #ifdef BCMDBG u32 wl_dbg_level = WL_DBG_ERR | WL_DBG_INFO; #else u32 wl_dbg_level = WL_DBG_ERR; #endif static s32 wl_cfg80211_change_iface(struct wiphy *wiphy, struct net_device *ndev, enum nl80211_iftype type, u32 *flags, struct vif_params *params); #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0) static s32 wl_cfg80211_scan(struct wiphy *wiphy, struct cfg80211_scan_request *request); #else static s32 wl_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_scan_request *request); #endif static s32 wl_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed); static s32 wl_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ibss_params *params); static s32 wl_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev); #if LINUX_VERSION_CODE < KERNEL_VERSION(3, 16, 0) static s32 wl_cfg80211_get_station(struct wiphy *wiphy, struct net_device *dev, u8 *mac, struct station_info *sinfo); #else static s32 wl_cfg80211_get_station(struct wiphy *wiphy, struct net_device *dev, const u8 *mac, struct station_info *sinfo); #endif static s32 wl_cfg80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, bool enabled, s32 timeout); static int wl_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_connect_params *sme); static s32 wl_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *dev, u16 reason_code); #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0) static s32 wl_cfg80211_set_tx_power(struct wiphy *wiphy, struct wireless_dev *wdev, enum nl80211_tx_power_setting type, s32 dbm); #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36) static s32 wl_cfg80211_set_tx_power(struct wiphy *wiphy, enum nl80211_tx_power_setting type, s32 dbm); #else static s32 wl_cfg80211_set_tx_power(struct wiphy *wiphy, enum tx_power_setting type, s32 dbm); #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0) static s32 wl_cfg80211_get_tx_power(struct wiphy *wiphy, struct wireless_dev *wdev, s32 *dbm); #else static s32 wl_cfg80211_get_tx_power(struct wiphy *wiphy, s32 *dbm); #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 38) static s32 wl_cfg80211_config_default_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool unicast, bool multicast); #else static s32 wl_cfg80211_config_default_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx); #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37) static s32 wl_cfg80211_add_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr, struct key_params *params); static s32 wl_cfg80211_del_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr); static s32 wl_cfg80211_get_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback) (void *cookie, struct key_params *params)); #else static s32 wl_cfg80211_add_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, const u8 *mac_addr, struct key_params *params); static s32 wl_cfg80211_del_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, const u8 *mac_addr); static s32 wl_cfg80211_get_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, const u8 *mac_addr, void *cookie, void (*callback) (void *cookie, struct key_params *params)); #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 33) static s32 wl_cfg80211_set_pmksa(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_pmksa *pmksa); static s32 wl_cfg80211_del_pmksa(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_pmksa *pmksa); static s32 wl_cfg80211_flush_pmksa(struct wiphy *wiphy, struct net_device *dev); #endif static s32 wl_create_event_handler(struct wl_cfg80211_priv *wl); static void wl_destroy_event_handler(struct wl_cfg80211_priv *wl); static s32 wl_event_handler(void *data); static void wl_init_eq(struct wl_cfg80211_priv *wl); static void wl_flush_eq(struct wl_cfg80211_priv *wl); static void wl_lock_eq(struct wl_cfg80211_priv *wl); static void wl_unlock_eq(struct wl_cfg80211_priv *wl); static void wl_init_eq_lock(struct wl_cfg80211_priv *wl); static void wl_init_eloop_handler(struct wl_cfg80211_event_loop *el); static struct wl_cfg80211_event_q *wl_deq_event(struct wl_cfg80211_priv *wl); static s32 wl_enq_event(struct wl_cfg80211_priv *wl, u32 type, const wl_event_msg_t *msg, void *data); static void wl_put_event(struct wl_cfg80211_event_q *e); static void wl_wakeup_event(struct wl_cfg80211_priv *wl); static s32 wl_notify_connect_status(struct wl_cfg80211_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data); static s32 wl_notify_roaming_status(struct wl_cfg80211_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data); static s32 wl_notify_scan_status(struct wl_cfg80211_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data); static s32 wl_bss_connect_done(struct wl_cfg80211_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data, bool completed); static s32 wl_bss_roaming_done(struct wl_cfg80211_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data); static s32 wl_notify_mic_status(struct wl_cfg80211_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data); static s32 wl_dev_bufvar_get(struct net_device *dev, s8 *name, s8 *buf, s32 buf_len); static __used s32 wl_dev_bufvar_set(struct net_device *dev, s8 *name, s8 *buf, s32 len); static s32 wl_dev_intvar_set(struct net_device *dev, s8 *name, s32 val); static s32 wl_dev_intvar_get(struct net_device *dev, s8 *name, s32 *retval); static s32 wl_dev_ioctl(struct net_device *dev, u32 cmd, void *arg, u32 len); static s32 wl_set_frag(struct net_device *dev, u32 frag_threshold); static s32 wl_set_rts(struct net_device *dev, u32 frag_threshold); static s32 wl_set_retry(struct net_device *dev, u32 retry, bool l); static void wl_init_prof(struct wl_cfg80211_profile *prof); static s32 wl_set_wpa_version(struct net_device *dev, struct cfg80211_connect_params *sme); static s32 wl_set_auth_type(struct net_device *dev, struct cfg80211_connect_params *sme); static s32 wl_set_set_cipher(struct net_device *dev, struct cfg80211_connect_params *sme); static s32 wl_set_key_mgmt(struct net_device *dev, struct cfg80211_connect_params *sme); static s32 wl_set_set_sharedkey(struct net_device *dev, struct cfg80211_connect_params *sme); static s32 wl_get_assoc_ies(struct wl_cfg80211_priv *wl); static void wl_ch_to_chanspec(struct ieee80211_channel *chan, struct wl_join_params *join_params, size_t *join_params_size); static void wl_rst_ie(struct wl_cfg80211_priv *wl); static __used s32 wl_add_ie(struct wl_cfg80211_priv *wl, u8 t, u8 l, u8 *v); static s32 wl_mrg_ie(struct wl_cfg80211_priv *wl, u8 *ie_stream, u16 ie_size); static s32 wl_cp_ie(struct wl_cfg80211_priv *wl, u8 *dst, u16 dst_size); static u32 wl_get_ielen(struct wl_cfg80211_priv *wl); static s32 wl_mode_to_nl80211_iftype(s32 mode); static s32 wl_alloc_wdev(struct device *dev, struct wireless_dev **rwdev); static void wl_free_wdev(struct wl_cfg80211_priv *wl); static s32 wl_inform_bss(struct wl_cfg80211_priv *wl, struct wl_scan_results *bss_list); static s32 wl_inform_single_bss(struct wl_cfg80211_priv *wl, struct wl_bss_info *bi); static s32 wl_update_bss_info(struct wl_cfg80211_priv *wl); static void key_endian_to_device(struct wl_wsec_key *key); static void key_endian_to_host(struct wl_wsec_key *key); static s32 wl_init_priv_mem(struct wl_cfg80211_priv *wl); static void wl_deinit_priv_mem(struct wl_cfg80211_priv *wl); static bool wl_is_ibssmode(struct wl_cfg80211_priv *wl); static void wl_link_up(struct wl_cfg80211_priv *wl); static void wl_link_down(struct wl_cfg80211_priv *wl); static s32 wl_set_mode(struct net_device *ndev, s32 iftype); static void wl_init_conf(struct wl_cfg80211_conf *conf); static s32 wl_update_wiphybands(struct wl_cfg80211_priv *wl); static __used s32 wl_update_pmklist(struct net_device *dev, struct wl_cfg80211_pmk_list *pmk_list, s32 err); #if defined(WL_DBGMSG_ENABLE) #define WL_DBG_ESTR_MAX 32 static s8 wl_dbg_estr[][WL_DBG_ESTR_MAX] = { "SET_SSID", "JOIN", "START", "AUTH", "AUTH_IND", "DEAUTH", "DEAUTH_IND", "ASSOC", "ASSOC_IND", "REASSOC", "REASSOC_IND", "DISASSOC", "DISASSOC_IND", "QUIET_START", "QUIET_END", "BEACON_RX", "LINK", "MIC_ERROR", "NDIS_LINK", "ROAM", "TXFAIL", "PMKID_CACHE", "RETROGRADE_TSF", "PRUNE", "AUTOAUTH", "EAPOL_MSG", "SCAN_COMPLETE", "ADDTS_IND", "DELTS_IND", "BCNSENT_IND", "BCNRX_MSG", "BCNLOST_MSG", "ROAM_PREP", "PFN_NET_FOUND", "PFN_NET_LOST", "RESET_COMPLETE", "JOIN_START", "ROAM_START", "ASSOC_START", "IBSS_ASSOC", "RADIO", "PSM_WATCHDOG", "PROBREQ_MSG", "SCAN_CONFIRM_IND", "PSK_SUP", "COUNTRY_CODE_CHANGED", "EXCEEDED_MEDIUM_TIME", "ICV_ERROR", "UNICAST_DECODE_ERROR", "MULTICAST_DECODE_ERROR", "TRACE", "IF", "RSSI", "PFN_SCAN_COMPLETE", "ACTION_FRAME", "ACTION_FRAME_COMPLETE", }; #endif #define CHAN2G(_channel, _freq, _flags) { \ .band = IEEE80211_BAND_2GHZ, \ .center_freq = (_freq), \ .hw_value = (_channel), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define CHAN5G(_channel, _flags) { \ .band = IEEE80211_BAND_5GHZ, \ .center_freq = 5000 + (5 * (_channel)), \ .hw_value = (_channel), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define RATE_TO_BASE100KBPS(rate) (((rate) * 10) / 2) #define RATETAB_ENT(_rateid, _flags) \ { \ .bitrate = RATE_TO_BASE100KBPS(_rateid), \ .hw_value = (_rateid), \ .flags = (_flags), \ } static struct ieee80211_rate __wl_rates[] = { RATETAB_ENT(DOT11_RATE_1M, 0), RATETAB_ENT(DOT11_RATE_2M, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(DOT11_RATE_5M5, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(DOT11_RATE_11M, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(DOT11_RATE_6M, 0), RATETAB_ENT(DOT11_RATE_9M, 0), RATETAB_ENT(DOT11_RATE_12M, 0), RATETAB_ENT(DOT11_RATE_18M, 0), RATETAB_ENT(DOT11_RATE_24M, 0), RATETAB_ENT(DOT11_RATE_36M, 0), RATETAB_ENT(DOT11_RATE_48M, 0), RATETAB_ENT(DOT11_RATE_54M, 0), }; #define wl_a_rates (__wl_rates + 4) #define wl_a_rates_size 8 #define wl_g_rates (__wl_rates + 0) #define wl_g_rates_size 12 static struct ieee80211_channel __wl_2ghz_channels[] = { CHAN2G(1, 2412, 0), CHAN2G(2, 2417, 0), CHAN2G(3, 2422, 0), CHAN2G(4, 2427, 0), CHAN2G(5, 2432, 0), CHAN2G(6, 2437, 0), CHAN2G(7, 2442, 0), CHAN2G(8, 2447, 0), CHAN2G(9, 2452, 0), CHAN2G(10, 2457, 0), CHAN2G(11, 2462, 0), CHAN2G(12, 2467, 0), CHAN2G(13, 2472, 0), CHAN2G(14, 2484, 0), }; static struct ieee80211_channel __wl_5ghz_a_channels[] = { CHAN5G(34, 0), CHAN5G(36, 0), CHAN5G(38, 0), CHAN5G(40, 0), CHAN5G(42, 0), CHAN5G(44, 0), CHAN5G(46, 0), CHAN5G(48, 0), CHAN5G(52, 0), CHAN5G(56, 0), CHAN5G(60, 0), CHAN5G(64, 0), CHAN5G(100, 0), CHAN5G(104, 0), CHAN5G(108, 0), CHAN5G(112, 0), CHAN5G(116, 0), CHAN5G(120, 0), CHAN5G(124, 0), CHAN5G(128, 0), CHAN5G(132, 0), CHAN5G(136, 0), CHAN5G(140, 0), CHAN5G(149, 0), CHAN5G(153, 0), CHAN5G(157, 0), CHAN5G(161, 0), CHAN5G(165, 0), CHAN5G(184, 0), CHAN5G(188, 0), CHAN5G(192, 0), CHAN5G(196, 0), CHAN5G(200, 0), CHAN5G(204, 0), CHAN5G(208, 0), CHAN5G(212, 0), CHAN5G(216, 0), }; static struct ieee80211_channel __wl_5ghz_n_channels[] = { CHAN5G(32, 0), CHAN5G(34, 0), CHAN5G(36, 0), CHAN5G(38, 0), CHAN5G(40, 0), CHAN5G(42, 0), CHAN5G(44, 0), CHAN5G(46, 0), CHAN5G(48, 0), CHAN5G(50, 0), CHAN5G(52, 0), CHAN5G(54, 0), CHAN5G(56, 0), CHAN5G(58, 0), CHAN5G(60, 0), CHAN5G(62, 0), CHAN5G(64, 0), CHAN5G(66, 0), CHAN5G(68, 0), CHAN5G(70, 0), CHAN5G(72, 0), CHAN5G(74, 0), CHAN5G(76, 0), CHAN5G(78, 0), CHAN5G(80, 0), CHAN5G(82, 0), CHAN5G(84, 0), CHAN5G(86, 0), CHAN5G(88, 0), CHAN5G(90, 0), CHAN5G(92, 0), CHAN5G(94, 0), CHAN5G(96, 0), CHAN5G(98, 0), CHAN5G(100, 0), CHAN5G(102, 0), CHAN5G(104, 0), CHAN5G(106, 0), CHAN5G(108, 0), CHAN5G(110, 0), CHAN5G(112, 0), CHAN5G(114, 0), CHAN5G(116, 0), CHAN5G(118, 0), CHAN5G(120, 0), CHAN5G(122, 0), CHAN5G(124, 0), CHAN5G(126, 0), CHAN5G(128, 0), CHAN5G(130, 0), CHAN5G(132, 0), CHAN5G(134, 0), CHAN5G(136, 0), CHAN5G(138, 0), CHAN5G(140, 0), CHAN5G(142, 0), CHAN5G(144, 0), CHAN5G(145, 0), CHAN5G(146, 0), CHAN5G(147, 0), CHAN5G(148, 0), CHAN5G(149, 0), CHAN5G(150, 0), CHAN5G(151, 0), CHAN5G(152, 0), CHAN5G(153, 0), CHAN5G(154, 0), CHAN5G(155, 0), CHAN5G(156, 0), CHAN5G(157, 0), CHAN5G(158, 0), CHAN5G(159, 0), CHAN5G(160, 0), CHAN5G(161, 0), CHAN5G(162, 0), CHAN5G(163, 0), CHAN5G(164, 0), CHAN5G(165, 0), CHAN5G(166, 0), CHAN5G(168, 0), CHAN5G(170, 0), CHAN5G(172, 0), CHAN5G(174, 0), CHAN5G(176, 0), CHAN5G(178, 0), CHAN5G(180, 0), CHAN5G(182, 0), CHAN5G(184, 0), CHAN5G(186, 0), CHAN5G(188, 0), CHAN5G(190, 0), CHAN5G(192, 0), CHAN5G(194, 0), CHAN5G(196, 0), CHAN5G(198, 0), CHAN5G(200, 0), CHAN5G(202, 0), CHAN5G(204, 0), CHAN5G(206, 0), CHAN5G(208, 0), CHAN5G(210, 0), CHAN5G(212, 0), CHAN5G(214, 0), CHAN5G(216, 0), CHAN5G(218, 0), CHAN5G(220, 0), CHAN5G(222, 0), CHAN5G(224, 0), CHAN5G(226, 0), CHAN5G(228, 0), }; static struct ieee80211_supported_band __wl_band_2ghz = { .band = IEEE80211_BAND_2GHZ, .channels = __wl_2ghz_channels, .n_channels = ARRAY_SIZE(__wl_2ghz_channels), .bitrates = wl_g_rates, .n_bitrates = wl_g_rates_size, }; static struct ieee80211_supported_band __wl_band_5ghz_a = { .band = IEEE80211_BAND_5GHZ, .channels = __wl_5ghz_a_channels, .n_channels = ARRAY_SIZE(__wl_5ghz_a_channels), .bitrates = wl_a_rates, .n_bitrates = wl_a_rates_size, }; static struct ieee80211_supported_band __wl_band_5ghz_n = { .band = IEEE80211_BAND_5GHZ, .channels = __wl_5ghz_n_channels, .n_channels = ARRAY_SIZE(__wl_5ghz_n_channels), .bitrates = wl_a_rates, .n_bitrates = wl_a_rates_size, }; static const u32 __wl_cipher_suites[] = { WLAN_CIPHER_SUITE_WEP40, WLAN_CIPHER_SUITE_WEP104, WLAN_CIPHER_SUITE_TKIP, WLAN_CIPHER_SUITE_CCMP, WLAN_CIPHER_SUITE_AES_CMAC, }; static void key_endian_to_device(struct wl_wsec_key *key) { key->index = htod32(key->index); key->len = htod32(key->len); key->algo = htod32(key->algo); key->flags = htod32(key->flags); key->rxiv.hi = htod32(key->rxiv.hi); key->rxiv.lo = htod16(key->rxiv.lo); key->iv_initialized = htod32(key->iv_initialized); } static void key_endian_to_host(struct wl_wsec_key *key) { key->index = dtoh32(key->index); key->len = dtoh32(key->len); key->algo = dtoh32(key->algo); key->flags = dtoh32(key->flags); key->rxiv.hi = dtoh32(key->rxiv.hi); key->rxiv.lo = dtoh16(key->rxiv.lo); key->iv_initialized = dtoh32(key->iv_initialized); } static s32 wl_dev_ioctl(struct net_device *dev, u32 cmd, void *arg, u32 len) { struct ifreq ifr; struct wl_ioctl ioc; mm_segment_t fs; s32 err = 0; BUG_ON(len < sizeof(int)); memset(&ioc, 0, sizeof(ioc)); ioc.cmd = cmd; ioc.buf = arg; ioc.len = len; strcpy(ifr.ifr_name, dev->name); ifr.ifr_data = (caddr_t)&ioc; fs = get_fs(); set_fs(get_ds()); #if defined(WL_USE_NETDEV_OPS) err = dev->netdev_ops->ndo_do_ioctl(dev, &ifr, SIOCDEVPRIVATE); #else err = dev->do_ioctl(dev, &ifr, SIOCDEVPRIVATE); #endif set_fs(fs); return err; } static s32 wl_cfg80211_change_iface(struct wiphy *wiphy, struct net_device *ndev, enum nl80211_iftype type, u32 *flags, struct vif_params *params) { struct wl_cfg80211_priv *wl = wiphy_to_wl(wiphy); struct wireless_dev *wdev; s32 infra = 0; s32 ap = 0; s32 err = 0; switch (type) { case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_WDS: WL_ERR(("type (%d) : currently we do not support this type\n", type)); return -EOPNOTSUPP; case NL80211_IFTYPE_ADHOC: wl->conf->mode = WL_MODE_IBSS; break; case NL80211_IFTYPE_STATION: wl->conf->mode = WL_MODE_BSS; infra = 1; break; default: return -EINVAL; } infra = htod32(infra); ap = htod32(ap); wdev = ndev->ieee80211_ptr; wdev->iftype = type; WL_DBG(("%s : ap (%d), infra (%d)\n", ndev->name, ap, infra)); err = wl_dev_ioctl(ndev, WLC_SET_INFRA, &infra, sizeof(infra)); if (err) { WL_ERR(("WLC_SET_INFRA error (%d)\n", err)); return err; } err = wl_dev_ioctl(ndev, WLC_SET_AP, &ap, sizeof(ap)); if (err) { WL_ERR(("WLC_SET_AP error (%d)\n", err)); return err; } return 0; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0) static s32 wl_cfg80211_scan(struct wiphy *wiphy, struct cfg80211_scan_request *request) #else static s32 wl_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_scan_request *request) #endif { #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0) struct net_device *ndev = request->wdev->netdev; #endif struct wl_cfg80211_priv *wl = ndev_to_wl(ndev); struct cfg80211_ssid *ssids; struct wl_cfg80211_scan_req *sr = wl_to_sr(wl); s32 passive_scan; s32 err = 0; if (request) { ssids = request->ssids; } else { ssids = NULL; } wl->scan_request = request; memset(&sr->ssid, 0, sizeof(sr->ssid)); if (ssids) { WL_DBG(("ssid \"%s\", ssid_len (%d)\n", ssids->ssid, ssids->ssid_len)); sr->ssid.SSID_len = min_t(u8, sizeof(sr->ssid.SSID), ssids->ssid_len); } if (sr->ssid.SSID_len) { memcpy(sr->ssid.SSID, ssids->ssid, sr->ssid.SSID_len); sr->ssid.SSID_len = htod32(sr->ssid.SSID_len); WL_DBG(("Specific scan ssid=\"%s\" len=%d\n", sr->ssid.SSID, sr->ssid.SSID_len)); } else { WL_DBG(("Broadcast scan\n")); } WL_DBG(("sr->ssid.SSID_len (%d)\n", sr->ssid.SSID_len)); passive_scan = wl->active_scan ? 0 : 1; err = wl_dev_ioctl(ndev, WLC_SET_PASSIVE_SCAN, &passive_scan, sizeof(passive_scan)); if (err) { WL_ERR(("WLC_SET_PASSIVE_SCAN error (%d)\n", err)); goto scan_out; } err = wl_dev_ioctl(ndev, WLC_SCAN, &sr->ssid, sizeof(sr->ssid)); if (err) { if (err == -EBUSY) { WL_INF(("system busy : scan for \"%s\" " "canceled\n", sr->ssid.SSID)); } else { WL_ERR(("WLC_SCAN error (%d)\n", err)); } goto scan_out; } return 0; scan_out: wl->scan_request = NULL; return err; } static s32 wl_dev_intvar_set(struct net_device *dev, s8 *name, s32 val) { s8 buf[WLC_IOCTL_SMLEN]; u32 len; s32 err = 0; val = htod32(val); len = bcm_mkiovar(name, (char *)(&val), sizeof(val), buf, sizeof(buf)); BUG_ON(!len); err = wl_dev_ioctl(dev, WLC_SET_VAR, buf, len); if (err) { WL_ERR(("error (%d)\n", err)); } return err; } static s32 wl_dev_intvar_get(struct net_device *dev, s8 *name, s32 *retval) { union { s8 buf[WLC_IOCTL_SMLEN]; s32 val; } var; u32 len; u32 data_null; s32 err = 0; len = bcm_mkiovar(name, (char *)(&data_null), 0, (char *)(&var), sizeof(var.buf)); BUG_ON(!len); err = wl_dev_ioctl(dev, WLC_GET_VAR, &var, len); if (err) { WL_ERR(("error (%d)\n", err)); } *retval = dtoh32(var.val); return err; } static s32 wl_set_rts(struct net_device *dev, u32 rts_threshold) { s32 err = 0; err = wl_dev_intvar_set(dev, "rtsthresh", rts_threshold); if (err) { WL_ERR(("Error (%d)\n", err)); return err; } return err; } static s32 wl_set_frag(struct net_device *dev, u32 frag_threshold) { s32 err = 0; err = wl_dev_intvar_set(dev, "fragthresh", frag_threshold); if (err) { WL_ERR(("Error (%d)\n", err)); return err; } return err; } static s32 wl_set_retry(struct net_device *dev, u32 retry, bool l) { s32 err = 0; u32 cmd = (l ? WLC_SET_LRL : WLC_SET_SRL); retry = htod32(retry); err = wl_dev_ioctl(dev, cmd, &retry, sizeof(retry)); if (err) { WL_ERR(("cmd (%d) , error (%d)\n", cmd, err)); return err; } return err; } static s32 wl_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed) { struct wl_cfg80211_priv *wl = wiphy_to_wl(wiphy); struct net_device *ndev = wl_to_ndev(wl); s32 err = 0; if (changed & WIPHY_PARAM_RTS_THRESHOLD && (wl->conf->rts_threshold != wiphy->rts_threshold)) { wl->conf->rts_threshold = wiphy->rts_threshold; err = wl_set_rts(ndev, wl->conf->rts_threshold); if (!err) return err; } if (changed & WIPHY_PARAM_FRAG_THRESHOLD && (wl->conf->frag_threshold != wiphy->frag_threshold)) { wl->conf->frag_threshold = wiphy->frag_threshold; err = wl_set_frag(ndev, wl->conf->frag_threshold); if (!err) return err; } if (changed & WIPHY_PARAM_RETRY_LONG && (wl->conf->retry_long != wiphy->retry_long)) { wl->conf->retry_long = wiphy->retry_long; err = wl_set_retry(ndev, wl->conf->retry_long, true); if (!err) return err; } if (changed & WIPHY_PARAM_RETRY_SHORT && (wl->conf->retry_short != wiphy->retry_short)) { wl->conf->retry_short = wiphy->retry_short; err = wl_set_retry(ndev, wl->conf->retry_short, false); if (!err) { return err; } } return err; } static s32 wl_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ibss_params *params) { struct wl_join_params join_params; size_t join_params_size; s32 val; s32 err = 0; WL_DBG(("\n")); if (params->bssid) { WL_ERR(("Invalid bssid\n")); return -EOPNOTSUPP; } if ((err = wl_dev_intvar_set(dev, "auth", 0))) { return err; } if ((err = wl_dev_intvar_set(dev, "wpa_auth", WPA_AUTH_NONE))) { return err; } if ((err = wl_dev_intvar_get(dev, "wsec", &val))) { return err; } val &= ~(WEP_ENABLED | TKIP_ENABLED | AES_ENABLED); if ((err = wl_dev_intvar_set(dev, "wsec", val))) { return err; } memset(&join_params, 0, sizeof(join_params)); join_params_size = sizeof(join_params.ssid); memcpy((void *)join_params.ssid.SSID, (void *)params->ssid, params->ssid_len); join_params.ssid.SSID_len = htod32(params->ssid_len); if (params->bssid) memcpy(&join_params.params.bssid, params->bssid, ETHER_ADDR_LEN); else memset(&join_params.params.bssid, 0, ETHER_ADDR_LEN); #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0) wl_ch_to_chanspec(params->chandef.chan, &join_params, &join_params_size); #else wl_ch_to_chanspec(params->channel, &join_params, &join_params_size); #endif err = wl_dev_ioctl(dev, WLC_SET_SSID, &join_params, join_params_size); if (err) { WL_ERR(("Error (%d)\n", err)); return err; } return err; } static s32 wl_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev) { struct wl_cfg80211_priv *wl = wiphy_to_wl(wiphy); s32 err = 0; WL_DBG(("\n")); wl_link_down(wl); return err; } static s32 wl_set_wpa_version(struct net_device *dev, struct cfg80211_connect_params *sme) { struct wl_cfg80211_priv *wl = ndev_to_wl(dev); s32 val = 0; s32 err = 0; if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_1) val = WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED; else if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_2) val = WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED; else val = WPA_AUTH_DISABLED; WL_DBG(("setting wpa_auth to 0x%0x\n", val)); err = wl_dev_intvar_set(dev, "wpa_auth", val); if (err) { WL_ERR(("set wpa_auth failed (%d)\n", err)); return err; } wl->profile->sec.wpa_versions = sme->crypto.wpa_versions; return err; } static s32 wl_set_auth_type(struct net_device *dev, struct cfg80211_connect_params *sme) { struct wl_cfg80211_priv *wl = ndev_to_wl(dev); s32 val = 0; s32 err = 0; switch (sme->auth_type) { case NL80211_AUTHTYPE_OPEN_SYSTEM: val = 0; WL_DBG(("open system\n")); break; case NL80211_AUTHTYPE_SHARED_KEY: val = 1; WL_DBG(("shared key\n")); break; case NL80211_AUTHTYPE_AUTOMATIC: val = 2; WL_DBG(("automatic\n")); break; case NL80211_AUTHTYPE_NETWORK_EAP: WL_DBG(("network eap\n")); default: val = 2; WL_ERR(("invalid auth type (%d)\n", sme->auth_type)); break; } err = wl_dev_intvar_set(dev, "auth", val); if (err) { WL_ERR(("set auth failed (%d)\n", err)); return err; } wl->profile->sec.auth_type = sme->auth_type; return err; } static s32 wl_set_set_cipher(struct net_device *dev, struct cfg80211_connect_params *sme) { struct wl_cfg80211_priv *wl = ndev_to_wl(dev); s32 pval = 0; s32 gval = 0; s32 val = 0; s32 err = 0; if (sme->crypto.n_ciphers_pairwise) { switch (sme->crypto.ciphers_pairwise[0]) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: pval = WEP_ENABLED; break; case WLAN_CIPHER_SUITE_TKIP: pval = TKIP_ENABLED; break; case WLAN_CIPHER_SUITE_CCMP: pval = AES_ENABLED; break; case WLAN_CIPHER_SUITE_AES_CMAC: pval = AES_ENABLED; break; default: WL_ERR(("invalid cipher pairwise (%d)\n", sme->crypto.ciphers_pairwise[0])); return -EINVAL; } } if (sme->crypto.cipher_group) { switch (sme->crypto.cipher_group) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: gval = WEP_ENABLED; break; case WLAN_CIPHER_SUITE_TKIP: gval = TKIP_ENABLED; break; case WLAN_CIPHER_SUITE_CCMP: gval = AES_ENABLED; break; case WLAN_CIPHER_SUITE_AES_CMAC: gval = AES_ENABLED; break; default: WL_ERR(("invalid cipher group (%d)\n", sme->crypto.cipher_group)); return -EINVAL; } } if ((err = wl_dev_intvar_get(dev, "wsec", &val))) { return err; } val &= ~(WEP_ENABLED | TKIP_ENABLED | AES_ENABLED); val |= pval | gval; WL_DBG(("set wsec to %d\n", val)); err = wl_dev_intvar_set(dev, "wsec", val); if (err) { WL_ERR(("error (%d)\n", err)); return err; } wl->profile->sec.cipher_pairwise = sme->crypto.ciphers_pairwise[0]; wl->profile->sec.cipher_group = sme->crypto.cipher_group; return err; } static s32 wl_set_key_mgmt(struct net_device *dev, struct cfg80211_connect_params *sme) { struct wl_cfg80211_priv *wl = ndev_to_wl(dev); s32 val = 0; s32 err = 0; if (sme->crypto.n_akm_suites) { err = wl_dev_intvar_get(dev, "wpa_auth", &val); if (err) { WL_ERR(("could not get wpa_auth (%d)\n", err)); return err; } if (val & (WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED)) { switch (sme->crypto.akm_suites[0]) { case WLAN_AKM_SUITE_8021X: val = WPA_AUTH_UNSPECIFIED; break; case WLAN_AKM_SUITE_PSK: val = WPA_AUTH_PSK; break; default: WL_ERR(("invalid cipher group (%d)\n", sme->crypto.cipher_group)); return -EINVAL; } } else if (val & (WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED)) { switch (sme->crypto.akm_suites[0]) { case WLAN_AKM_SUITE_8021X: val = WPA2_AUTH_UNSPECIFIED; break; case WLAN_AKM_SUITE_PSK: val = WPA2_AUTH_PSK; break; default: WL_ERR(("invalid cipher group (%d)\n", sme->crypto.cipher_group)); return -EINVAL; } } WL_DBG(("setting wpa_auth to %d\n", val)); err = wl_dev_intvar_set(dev, "wpa_auth", val); if (err) { WL_ERR(("could not set wpa_auth (%d)\n", err)); return err; } } wl->profile->sec.wpa_auth = sme->crypto.akm_suites[0]; return err; } static s32 wl_set_set_sharedkey(struct net_device *dev, struct cfg80211_connect_params *sme) { struct wl_cfg80211_priv *wl = ndev_to_wl(dev); struct wl_cfg80211_security *sec; struct wl_wsec_key key; s32 err = 0; WL_DBG(("key len (%d)\n", sme->key_len)); if (sme->key_len) { sec = &wl->profile->sec; WL_DBG(("wpa_versions 0x%x cipher_pairwise 0x%x\n", sec->wpa_versions, sec->cipher_pairwise)); if (!(sec->wpa_versions & (NL80211_WPA_VERSION_1 | NL80211_WPA_VERSION_2)) && (sec->cipher_pairwise & (WLAN_CIPHER_SUITE_WEP40 | WLAN_CIPHER_SUITE_WEP104))) { memset(&key, 0, sizeof(key)); key.len = (u32) sme->key_len; key.index = (u32) sme->key_idx; if (key.len > sizeof(key.data)) { WL_ERR(("Too long key length (%u)\n", key.len)); return -EINVAL; } memcpy(key.data, sme->key, key.len); key.flags = WL_PRIMARY_KEY; switch (sec->cipher_pairwise) { case WLAN_CIPHER_SUITE_WEP40: key.algo = CRYPTO_ALGO_WEP1; break; case WLAN_CIPHER_SUITE_WEP104: key.algo = CRYPTO_ALGO_WEP128; break; default: WL_ERR(("Invalid algorithm (%d)\n", sme->crypto.ciphers_pairwise[0])); return -EINVAL; } WL_DBG(("key length (%d) key index (%d) algo (%d)\n", key.len, key.index, key.algo)); WL_DBG(("key \"%s\"\n", key.data)); key_endian_to_device(&key); err = wl_dev_ioctl(dev, WLC_SET_KEY, &key, sizeof(key)); if (err) { WL_ERR(("WLC_SET_KEY error (%d)\n", err)); return err; } } } return err; } static s32 wl_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_connect_params *sme) { struct wl_cfg80211_priv *wl = wiphy_to_wl(wiphy); struct wl_join_params join_params; size_t join_params_size; char valc; s32 err = 0; if (!sme->ssid) { WL_ERR(("Invalid ssid\n")); return -EOPNOTSUPP; } WL_DBG(("ie (%p), ie_len (%zd)\n", sme->ie, sme->ie_len)); err = wl_set_auth_type(dev, sme); if (err) return err; err = wl_set_wpa_version(dev, sme); if (err) return err; err = wl_set_set_cipher(dev, sme); if (err) return err; err = wl_set_key_mgmt(dev, sme); if (err) return err; err = wl_set_set_sharedkey(dev, sme); if (err) return err; valc = 1; wl_dev_bufvar_set(dev, "wsec_restrict", &valc, 1); if (sme->bssid) { memcpy(wl->profile->bssid, sme->bssid, ETHER_ADDR_LEN); } else { memset(wl->profile->bssid, 0, ETHER_ADDR_LEN); } memset(&join_params, 0, sizeof(join_params)); join_params_size = sizeof(join_params.ssid); join_params.ssid.SSID_len = min(sizeof(join_params.ssid.SSID), sme->ssid_len); memcpy(&join_params.ssid.SSID, sme->ssid, join_params.ssid.SSID_len); join_params.ssid.SSID_len = htod32(join_params.ssid.SSID_len); memcpy(&join_params.params.bssid, ðer_bcast, ETHER_ADDR_LEN); memcpy(wl->profile->ssid.SSID, &join_params.ssid.SSID, join_params.ssid.SSID_len); wl->profile->ssid.SSID_len = join_params.ssid.SSID_len; wl_ch_to_chanspec(sme->channel, &join_params, &join_params_size); WL_DBG(("join_param_size %u\n", (unsigned int)join_params_size)); if (join_params.ssid.SSID_len < IEEE80211_MAX_SSID_LEN) { WL_DBG(("ssid \"%s\", len (%d)\n", join_params.ssid.SSID, join_params.ssid.SSID_len)); } err = wl_dev_ioctl(dev, WLC_SET_SSID, &join_params, join_params_size); if (err) { WL_ERR(("error (%d)\n", err)); return err; } set_bit(WL_STATUS_CONNECTING, &wl->status); return err; } static s32 wl_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *dev, u16 reason_code) { struct wl_cfg80211_priv *wl = wiphy_to_wl(wiphy); scb_val_t scbval; s32 err = 0; WL_DBG(("Reason %d\n", reason_code)); if (wl->profile->active) { scbval.val = reason_code; memcpy(&scbval.ea, &wl->bssid, ETHER_ADDR_LEN); scbval.val = htod32(scbval.val); err = wl_dev_ioctl(dev, WLC_DISASSOC, &scbval, sizeof(scb_val_t)); if (err) { WL_ERR(("error (%d)\n", err)); return err; } } return err; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0) static s32 wl_cfg80211_set_tx_power(struct wiphy *wiphy, struct wireless_dev *wdev, enum nl80211_tx_power_setting type, s32 dbm) #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36) static s32 wl_cfg80211_set_tx_power(struct wiphy *wiphy, enum nl80211_tx_power_setting type, s32 dbm) #else #define NL80211_TX_POWER_AUTOMATIC TX_POWER_AUTOMATIC #define NL80211_TX_POWER_LIMITED TX_POWER_LIMITED #define NL80211_TX_POWER_FIXED TX_POWER_FIXED static s32 wl_cfg80211_set_tx_power(struct wiphy *wiphy, enum tx_power_setting type, s32 dbm) #endif { struct wl_cfg80211_priv *wl = wiphy_to_wl(wiphy); struct net_device *ndev = wl_to_ndev(wl); u16 txpwrmw; s32 err = 0; s32 disable = 0; switch (type) { case NL80211_TX_POWER_AUTOMATIC: break; case NL80211_TX_POWER_LIMITED: if (dbm < 0) { WL_ERR(("TX_POWER_LIMITTED - dbm is negative\n")); return -EINVAL; } break; case NL80211_TX_POWER_FIXED: if (dbm < 0) { WL_ERR(("TX_POWER_FIXED - dbm is negative..\n")); return -EINVAL; } break; } disable = WL_RADIO_SW_DISABLE << 16; disable = htod32(disable); err = wl_dev_ioctl(ndev, WLC_SET_RADIO, &disable, sizeof(disable)); if (err) { WL_ERR(("WLC_SET_RADIO error (%d)\n", err)); return err; } if (dbm > 0xffff) txpwrmw = 0xffff; else txpwrmw = (u16) dbm; err = wl_dev_intvar_set(ndev, "qtxpower", (s32) (bcm_mw_to_qdbm(txpwrmw))); if (err) { WL_ERR(("qtxpower error (%d)\n", err)); return err; } wl->conf->tx_power = dbm; return err; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0) static s32 wl_cfg80211_get_tx_power(struct wiphy *wiphy, struct wireless_dev *wdev, s32 *dbm) #else static s32 wl_cfg80211_get_tx_power(struct wiphy *wiphy, s32 *dbm) #endif { struct wl_cfg80211_priv *wl = wiphy_to_wl(wiphy); struct net_device *ndev = wl_to_ndev(wl); s32 txpwrdbm; u8 result; s32 err = 0; err = wl_dev_intvar_get(ndev, "qtxpower", &txpwrdbm); if (err) { WL_ERR(("error (%d)\n", err)); return err; } result = (u8) (txpwrdbm & ~WL_TXPWR_OVERRIDE); *dbm = (s32) bcm_qdbm_to_mw(result); return err; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 38) static s32 wl_cfg80211_config_default_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool unicast, bool multicast) #else static s32 wl_cfg80211_config_default_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx) #endif { u32 index; s32 err = 0; WL_DBG(("key index (%d)\n", key_idx)); index = (u32) key_idx; index = htod32(index); err = wl_dev_ioctl(dev, WLC_SET_KEY_PRIMARY, &index, sizeof(index)); if (err) { WL_DBG(("error (%d)\n", err)); } return 0; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37) static s32 wl_cfg80211_add_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr, struct key_params *params) #else static s32 wl_cfg80211_add_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, const u8 *mac_addr, struct key_params *params) #endif { struct wl_cfg80211_priv *wl = ndev_to_wl(dev); struct wl_wsec_key key; s32 secval, secnew = 0; s32 err = 0; WL_DBG(("key index %u len %u\n", (unsigned)key_idx, params->key_len)); memset(&key, 0, sizeof(key)); key.index = (u32) key_idx; switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: key.algo = CRYPTO_ALGO_WEP1; secnew = WEP_ENABLED; WL_DBG(("WLAN_CIPHER_SUITE_WEP40\n")); break; case WLAN_CIPHER_SUITE_WEP104: key.algo = CRYPTO_ALGO_WEP128; secnew = WEP_ENABLED; WL_DBG(("WLAN_CIPHER_SUITE_WEP104\n")); break; case WLAN_CIPHER_SUITE_TKIP: key.algo = CRYPTO_ALGO_TKIP; secnew = TKIP_ENABLED; WL_DBG(("WLAN_CIPHER_SUITE_TKIP\n")); break; case WLAN_CIPHER_SUITE_AES_CMAC: key.algo = CRYPTO_ALGO_AES_CCM; secnew = AES_ENABLED; WL_DBG(("WLAN_CIPHER_SUITE_AES_CMAC\n")); break; case WLAN_CIPHER_SUITE_CCMP: key.algo = CRYPTO_ALGO_AES_CCM; secnew = AES_ENABLED; WL_DBG(("WLAN_CIPHER_SUITE_CCMP\n")); break; default: WL_ERR(("Invalid cipher (0x%x)\n", params->cipher)); return -EINVAL; } if (mac_addr) { if (!ETHER_ISMULTI(mac_addr)) { memcpy((char *)&key.ea, (void *)mac_addr, ETHER_ADDR_LEN); } } key.len = (u32) params->key_len; if (key.len > sizeof(key.data)) { WL_ERR(("Too long key length (%u)\n", key.len)); return -EINVAL; } memcpy(key.data, params->key, key.len); if (params->cipher == WLAN_CIPHER_SUITE_TKIP) { u8 keybuf[8]; memcpy(keybuf, &key.data[24], sizeof(keybuf)); memcpy(&key.data[24], &key.data[16], sizeof(keybuf)); memcpy(&key.data[16], keybuf, sizeof(keybuf)); } if (params->seq_len) { u8 *ivptr; if (params->seq_len != 6) { WL_ERR(("seq_len %d is unexpected, check implementation.\n", params->seq_len)); } ivptr = (u8 *) params->seq; key.rxiv.hi = (ivptr[5] << 24) | (ivptr[4] << 16) | (ivptr[3] << 8) | ivptr[2]; key.rxiv.lo = (ivptr[1] << 8) | ivptr[0]; key.iv_initialized = true; } key_endian_to_device(&key); if (wl->passive) { schedule(); } err = wl_dev_ioctl(dev, WLC_SET_KEY, &key, sizeof(key)); if (err) { WL_ERR(("WLC_SET_KEY error (%d)\n", err)); return err; } if ((err = wl_dev_intvar_get(dev, "wsec", &secval))) { return err; } if (secnew == WEP_ENABLED) { secval &= ~(TKIP_ENABLED | AES_ENABLED); } else { secval &= ~(WEP_ENABLED); } secval |= secnew; WL_DBG(("set wsec to %d\n", secval)); err = wl_dev_intvar_set(dev, "wsec", secval); if (err) { WL_ERR(("error (%d)\n", err)); return err; } if (mac_addr) { wl->profile->sec.cipher_pairwise = params->cipher; } else { wl->profile->sec.cipher_group = params->cipher; } return err; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37) static s32 wl_cfg80211_del_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr) #else static s32 wl_cfg80211_del_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, const u8 *mac_addr) #endif { struct wl_wsec_key key; s32 err = 0; WL_DBG(("key index (%d)\n", key_idx)); memset(&key, 0, sizeof(key)); key.index = (u32) key_idx; key.len = 0; if (mac_addr) { if (!ETHER_ISMULTI(mac_addr)) { memcpy((char *)&key.ea, (void *)mac_addr, ETHER_ADDR_LEN); } } key.algo = CRYPTO_ALGO_OFF; key_endian_to_device(&key); err = wl_dev_ioctl(dev, WLC_SET_KEY, &key, sizeof(key)); if (err) { if (err == -EINVAL) { if (key.index >= DOT11_MAX_DEFAULT_KEYS) { WL_DBG(("invalid key index (%d)\n", key_idx)); } } else { WL_ERR(("WLC_SET_KEY error (%d)\n", err)); } return err; } return err; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37) static s32 wl_cfg80211_get_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback) (void *cookie, struct key_params * params)) #else static s32 wl_cfg80211_get_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, const u8 *mac_addr, void *cookie, void (*callback) (void *cookie, struct key_params * params)) #endif { struct key_params params; struct wl_wsec_key key; struct wl_cfg80211_priv *wl = wiphy_to_wl(wiphy); struct wl_cfg80211_security *sec; s32 wsec; s32 err = 0; WL_DBG(("key index (%d)\n", key_idx)); memset(¶ms, 0, sizeof(params)); memset(&key, 0, sizeof(key)); key.index = key_idx; key_endian_to_device(&key); if ((err = wl_dev_ioctl(dev, WLC_GET_KEY, &key, sizeof(key)))) { return err; } key_endian_to_host(&key); params.key_len = (u8) min_t(u8, DOT11_MAX_KEY_SIZE, key.len); memcpy((char *)params.key, key.data, params.key_len); if ((err = wl_dev_ioctl(dev, WLC_GET_WSEC, &wsec, sizeof(wsec)))) { return err; } wsec = dtoh32(wsec); switch (wsec) { case WEP_ENABLED: sec = &wl->profile->sec; if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP40) { params.cipher = WLAN_CIPHER_SUITE_WEP40; WL_DBG(("WLAN_CIPHER_SUITE_WEP40\n")); } else if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP104) { params.cipher = WLAN_CIPHER_SUITE_WEP104; WL_DBG(("WLAN_CIPHER_SUITE_WEP104\n")); } break; case TKIP_ENABLED: params.cipher = WLAN_CIPHER_SUITE_TKIP; WL_DBG(("WLAN_CIPHER_SUITE_TKIP\n")); break; case AES_ENABLED: params.cipher = WLAN_CIPHER_SUITE_AES_CMAC; WL_DBG(("WLAN_CIPHER_SUITE_AES_CMAC\n")); break; default: WL_ERR(("Invalid algo (0x%x)\n", wsec)); return -EINVAL; } callback(cookie, ¶ms); return err; } #if LINUX_VERSION_CODE < KERNEL_VERSION(3, 16, 0) static s32 wl_cfg80211_get_station(struct wiphy *wiphy, struct net_device *dev, u8 *mac, struct station_info *sinfo) #else static s32 wl_cfg80211_get_station(struct wiphy *wiphy, struct net_device *dev, const u8 *mac, struct station_info *sinfo) #endif { struct wl_cfg80211_priv *wl = wiphy_to_wl(wiphy); scb_val_t scb_val; int rssi; s32 rate; s32 err = 0; if (memcmp(mac, wl->profile->bssid, ETHER_ADDR_LEN)) { WL_ERR(("Wrong Mac address, mac = %pM profile =%pM\n", mac, wl->profile->bssid)); return -ENOENT; } err = wl_dev_ioctl(dev, WLC_GET_RATE, &rate, sizeof(rate)); if (err) { WL_DBG(("Could not get rate (%d)\n", err)); } else { rate = dtoh32(rate); #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 0, 0) sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE); #else sinfo->filled |= STATION_INFO_TX_BITRATE; #endif sinfo->txrate.legacy = rate * 5; WL_DBG(("Rate %d Mbps\n", (rate / 2))); } if (test_bit(WL_STATUS_CONNECTED, &wl->status)) { memset(&scb_val, 0, sizeof(scb_val)); err = wl_dev_ioctl(dev, WLC_GET_RSSI, &scb_val, sizeof(scb_val_t)); if (err) { WL_DBG(("Could not get rssi (%d)\n", err)); return err; } rssi = dtoh32(scb_val.val); #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 0, 0) sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL); #else sinfo->filled |= STATION_INFO_SIGNAL; #endif sinfo->signal = rssi; WL_DBG(("RSSI %d dBm\n", rssi)); } return err; } static s32 wl_cfg80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, bool enabled, s32 timeout) { s32 pm; s32 err = 0; pm = enabled ? PM_FAST : PM_OFF; pm = htod32(pm); WL_DBG(("power save %s\n", (pm ? "enabled" : "disabled"))); err = wl_dev_ioctl(dev, WLC_SET_PM, &pm, sizeof(pm)); if (err) { if (err == -ENODEV) WL_DBG(("net_device is not ready yet\n")); else WL_ERR(("error (%d)\n", err)); return err; } return err; } static __used s32 wl_update_pmklist(struct net_device *dev, struct wl_cfg80211_pmk_list *pmk_list, s32 err) { int i, j; WL_DBG(("No of elements %d\n", pmk_list->pmkids.npmkid)); for (i = 0; i < pmk_list->pmkids.npmkid; i++) { WL_DBG(("PMKID[%d]: %pM =\n", i, &pmk_list->pmkids.pmkid[i].BSSID)); for (j = 0; j < WPA2_PMKID_LEN; j++) { WL_DBG(("%02x\n", pmk_list->pmkids.pmkid[i].PMKID[j])); } } if (!err) { err = wl_dev_bufvar_set(dev, "pmkid_info", (char *)pmk_list, sizeof(*pmk_list)); } return err; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 33) static s32 wl_cfg80211_set_pmksa(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_pmksa *pmksa) { struct wl_cfg80211_priv *wl = wiphy_to_wl(wiphy); s32 err = 0; int i; for (i = 0; i < wl->pmk_list->pmkids.npmkid; i++) if (!memcmp(pmksa->bssid, &wl->pmk_list->pmkids.pmkid[i].BSSID, ETHER_ADDR_LEN)) break; if (i < WL_NUM_PMKIDS_MAX) { memcpy(&wl->pmk_list->pmkids.pmkid[i].BSSID, pmksa->bssid, ETHER_ADDR_LEN); memcpy(&wl->pmk_list->pmkids.pmkid[i].PMKID, pmksa->pmkid, WPA2_PMKID_LEN); if (i == wl->pmk_list->pmkids.npmkid) wl->pmk_list->pmkids.npmkid++; } else { err = -EINVAL; } WL_DBG(("set_pmksa,IW_PMKSA_ADD - PMKID: %pM =\n", &wl->pmk_list->pmkids.pmkid[wl->pmk_list->pmkids.npmkid].BSSID)); for (i = 0; i < WPA2_PMKID_LEN; i++) { WL_DBG(("%02x\n", wl->pmk_list->pmkids.pmkid[wl->pmk_list->pmkids.npmkid].PMKID[i])); } err = wl_update_pmklist(dev, wl->pmk_list, err); return err; } static s32 wl_cfg80211_del_pmksa(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_pmksa *pmksa) { struct wl_cfg80211_priv *wl = wiphy_to_wl(wiphy); struct _pmkid_list pmkid; s32 err = 0; int i; memcpy(&pmkid.pmkid[0].BSSID, pmksa->bssid, ETHER_ADDR_LEN); memcpy(&pmkid.pmkid[0].PMKID, pmksa->pmkid, WPA2_PMKID_LEN); WL_DBG(("del_pmksa,IW_PMKSA_REMOVE - PMKID: %pM =\n", &pmkid.pmkid[0].BSSID)); for (i = 0; i < WPA2_PMKID_LEN; i++) { WL_DBG(("%02x\n", pmkid.pmkid[0].PMKID[i])); } for (i = 0; i < wl->pmk_list->pmkids.npmkid; i++) if (!memcmp(pmksa->bssid, &wl->pmk_list->pmkids.pmkid[i].BSSID, ETHER_ADDR_LEN)) break; if ((wl->pmk_list->pmkids.npmkid > 0) && (i < wl->pmk_list->pmkids.npmkid)) { memset(&wl->pmk_list->pmkids.pmkid[i], 0, sizeof(pmkid_t)); for (; i < (wl->pmk_list->pmkids.npmkid - 1); i++) { memcpy(&wl->pmk_list->pmkids.pmkid[i].BSSID, &wl->pmk_list->pmkids.pmkid[i + 1].BSSID, ETHER_ADDR_LEN); memcpy(&wl->pmk_list->pmkids.pmkid[i].PMKID, &wl->pmk_list->pmkids.pmkid[i + 1].PMKID, WPA2_PMKID_LEN); } wl->pmk_list->pmkids.npmkid--; } else { err = -EINVAL; } err = wl_update_pmklist(dev, wl->pmk_list, err); return err; } static s32 wl_cfg80211_flush_pmksa(struct wiphy *wiphy, struct net_device *dev) { struct wl_cfg80211_priv *wl = wiphy_to_wl(wiphy); s32 err = 0; memset(wl->pmk_list, 0, sizeof(*wl->pmk_list)); err = wl_update_pmklist(dev, wl->pmk_list, err); return err; } #endif #ifdef CONFIG_PM #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 39) #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0) static int wl_wowl_ind_wake_reason(struct wl_cfg80211_priv *wl, struct cfg80211_wowlan_wakeup *wakeup) { wl_wowl_wakeind_t wowl_ind; s32 err; err = wl_dev_bufvar_get(wl_to_ndev(wl), "wowl_wakeind", (s8 *)&wowl_ind, sizeof(wowl_ind)); if (err != 0) { WL_ERR(("Unable to get wake reason, err = %d\n", err)); return -1; } if (wowl_ind.ucode_wakeind == 0) { WL_DBG(("System woke, but not by us\n")); return 0; } WL_DBG(("wake reason is 0x%x\n", wowl_ind.ucode_wakeind)); if (wowl_ind.ucode_wakeind & WL_WOWL_MAGIC) { WL_ERR(("WOWLAN Woke for: Magic Pkt\n")); wakeup->magic_pkt = true; } if (wowl_ind.ucode_wakeind & WL_WOWL_DIS) { WL_ERR(("WOWLAN Woke for: Disconnect\n")); wakeup->disconnect = true; } if (wowl_ind.ucode_wakeind & WL_WOWL_BCN) { WL_ERR(("WOWLAN Woke for: Beacon Loss\n")); wakeup->disconnect = true; } if (wowl_ind.ucode_wakeind & WL_WOWL_GTK_FAILURE) { WL_ERR(("WOWLAN Woke for: GTK failure\n")); wakeup->gtk_rekey_failure = true; } if (wowl_ind.ucode_wakeind & WL_WOWL_EAPID) { WL_ERR(("WOWLAN Woke for: EAP identify request\n")); wakeup->eap_identity_req = true; } if (wowl_ind.ucode_wakeind & WL_WOWL_M1) { WL_ERR(("WOWLAN Woke for: 4-way handshake request\n")); wakeup->four_way_handshake = true; } return 1; } #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 1, 0) static int wl_cfg80211_rekey(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_gtk_rekey_data *data) { struct wl_cfg80211_priv *wl = wiphy_to_wl(wiphy); wlc_rekey_info_t rekey; s32 err; if (!wl->offloads) { return 0; } memset(&rekey, 0, sizeof(rekey)); memcpy(&rekey.kek, data->kek, WLC_KEK_LEN); memcpy(&rekey.kck, data->kck, WLC_KCK_LEN); memcpy(&rekey.replay_counter, data->replay_ctr, WLC_REPLAY_CTR_LEN); WL_INF(("Send down replay counter %x%x%x%x%x%x%x%x\n", rekey.replay_counter[0], rekey.replay_counter[1], rekey.replay_counter[2], rekey.replay_counter[3], rekey.replay_counter[4], rekey.replay_counter[5], rekey.replay_counter[6], rekey.replay_counter[7])); err = wl_dev_bufvar_set(wl_to_ndev(wl), "wowl_replay", (s8 *)&rekey, sizeof(rekey)); if (err) { WL_ERR(("Error calling wowl_set_key\n")); return err; } return err; } #endif static int wl_cfg80211_suspend(struct wiphy *wiphy, struct cfg80211_wowlan *wowlan) { struct wl_cfg80211_priv *wl = wiphy_to_wl(wiphy); uint wowl = 0; s32 err; if (!wowlan) { WL_DBG(("No wowlan requested\n")); return 0; } if (!test_bit(WL_STATUS_CONNECTED, &wl->status)) { WL_INF(("No wowl when not associated.\n")); return 0; } err = wl_dev_intvar_get(wl_to_ndev(wl), "wowl", &wowl); if (err) { WL_ERR(("Error fetching WOWL %d\n", err)); } if (wowlan->disconnect) { WL_INF(("Requesting wake on Disconnect\n")); wowl |= WL_WOWL_DIS | WL_WOWL_BCN; } if (wowlan->magic_pkt) { WL_INF(("Requesting wake on Magic Pkt\n")); wowl |= WL_WOWL_MAGIC; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 1, 0) if (wowlan->gtk_rekey_failure) { WL_INF(("Requesting wake GTK rekey failure Pkt\n")); wowl |= WL_WOWL_GTK_FAILURE; } if (wowlan->four_way_handshake) { WL_INF(("Requesting wake on 4way handshake request\n")); wowl |= WL_WOWL_M1; } #endif wowl |= WL_WOWL_KEYROT; err = wl_dev_intvar_set(wl_to_ndev(wl), "wowl", wowl); if (err) { WL_ERR(("Error enabling WOWL %d\n", err)); } return err; } #else static int wl_cfg80211_suspend(struct wiphy *wiphy) { return 0; } #endif static int wl_cfg80211_resume(struct wiphy *wiphy) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 1, 0) struct wl_cfg80211_priv *wl = wiphy_to_wl(wiphy); wlc_rekey_info_t *rekey = (wlc_rekey_info_t *)wl->extra_buf; s32 err; #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0) struct cfg80211_wowlan_wakeup wakeup; int result; memset(&wakeup, 0, sizeof(wakeup)); wakeup.pattern_idx = -1; result = wl_wowl_ind_wake_reason(wl, &wakeup); switch (result) { case -1: break; case 0: cfg80211_report_wowlan_wakeup(wl_to_wdev(wl), NULL, GFP_KERNEL); break; case 1: cfg80211_report_wowlan_wakeup(wl_to_wdev(wl), &wakeup, GFP_KERNEL); break; } #endif err = wl_dev_bufvar_get(wl_to_ndev(wl), "wowl_replay", (s8 *)rekey, sizeof(wlc_rekey_info_t)); if (!err) { WL_INF(("Send up replay counter %x%x%x%x%x%x%x%x\n", rekey->replay_counter[0], rekey->replay_counter[1], rekey->replay_counter[2], rekey->replay_counter[3], rekey->replay_counter[4], rekey->replay_counter[5], rekey->replay_counter[6], rekey->replay_counter[7])); cfg80211_gtk_rekey_notify(wl_to_ndev(wl), (u8 *)&wl->bssid.octet, rekey->replay_counter, GFP_KERNEL); } #endif return 0; } #endif static struct cfg80211_ops wl_cfg80211_ops = { .change_virtual_intf = wl_cfg80211_change_iface, .scan = wl_cfg80211_scan, .set_wiphy_params = wl_cfg80211_set_wiphy_params, .join_ibss = wl_cfg80211_join_ibss, .leave_ibss = wl_cfg80211_leave_ibss, .get_station = wl_cfg80211_get_station, .set_tx_power = wl_cfg80211_set_tx_power, .get_tx_power = wl_cfg80211_get_tx_power, .add_key = wl_cfg80211_add_key, .del_key = wl_cfg80211_del_key, .get_key = wl_cfg80211_get_key, .set_default_key = wl_cfg80211_config_default_key, .set_power_mgmt = wl_cfg80211_set_power_mgmt, .connect = wl_cfg80211_connect, .disconnect = wl_cfg80211_disconnect, #ifdef CONFIG_PM .suspend = wl_cfg80211_suspend, .resume = wl_cfg80211_resume, #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 1, 0) .set_rekey_data = wl_cfg80211_rekey, #endif #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 33) .set_pmksa = wl_cfg80211_set_pmksa, .del_pmksa = wl_cfg80211_del_pmksa, .flush_pmksa = wl_cfg80211_flush_pmksa #endif }; #ifdef CONFIG_PM #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 39) #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0) static const struct wiphy_wowlan_support wl_wowlan_support = { #else static struct wiphy_wowlan_support wl_wowlan_support = { #endif .flags = WIPHY_WOWLAN_MAGIC_PKT #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 1, 0) | WIPHY_WOWLAN_SUPPORTS_GTK_REKEY | WIPHY_WOWLAN_GTK_REKEY_FAILURE | WIPHY_WOWLAN_EAP_IDENTITY_REQ #endif | WIPHY_WOWLAN_DISCONNECT, }; #endif #endif static s32 wl_mode_to_nl80211_iftype(s32 mode) { s32 err = 0; switch (mode) { case WL_MODE_BSS: return NL80211_IFTYPE_STATION; case WL_MODE_IBSS: return NL80211_IFTYPE_ADHOC; default: return NL80211_IFTYPE_UNSPECIFIED; } return err; } static s32 wl_alloc_wdev(struct device *dev, struct wireless_dev **rwdev) { struct wireless_dev *wdev; s32 err = 0; wdev = kzalloc(sizeof(*wdev), GFP_KERNEL); if (!wdev) { WL_ERR(("Could not allocate wireless device\n")); err = -ENOMEM; goto early_out; } wdev->wiphy = wiphy_new(&wl_cfg80211_ops, sizeof(struct wl_cfg80211_priv)); if (!wdev->wiphy) { WL_ERR(("Couldn not allocate wiphy device\n")); err = -ENOMEM; goto wiphy_new_out; } set_wiphy_dev(wdev->wiphy, dev); wdev->wiphy->max_scan_ssids = WL_NUM_SCAN_MAX; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 33) wdev->wiphy->max_num_pmkids = WL_NUM_PMKIDS_MAX; #endif wdev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC); wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &__wl_band_2ghz; wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &__wl_band_5ghz_a; wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; wdev->wiphy->cipher_suites = __wl_cipher_suites; wdev->wiphy->n_cipher_suites = ARRAY_SIZE(__wl_cipher_suites); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 33) wdev->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; #endif #ifdef CONFIG_PM #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 39) #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0) wdev->wiphy->wowlan = &wl_wowlan_support; #else wdev->wiphy->wowlan = wl_wowlan_support; #endif #endif #endif err = wiphy_register(wdev->wiphy); if (err < 0) { WL_ERR(("Couldn not register wiphy device (%d)\n", err)); goto wiphy_register_out; } *rwdev = wdev; return err; wiphy_register_out: wiphy_free(wdev->wiphy); wiphy_new_out: kfree(wdev); early_out: *rwdev = wdev; return err; } static void wl_free_wdev(struct wl_cfg80211_priv *wl) { struct wireless_dev *wdev = wl_to_wdev(wl); if (!wdev) { WL_ERR(("wdev is invalid\n")); return; } wiphy_unregister(wdev->wiphy); wiphy_free(wdev->wiphy); kfree(wdev); wl_to_wdev(wl) = NULL; } static s32 wl_inform_bss(struct wl_cfg80211_priv *wl, struct wl_scan_results *bss_list) { struct wl_bss_info *bi = NULL; s32 err = 0; int i; if (bss_list->version != WL_BSS_INFO_VERSION) { WL_ERR(("Version %d != WL_BSS_INFO_VERSION\n", bss_list->version)); return -EOPNOTSUPP; } WL_DBG(("scanned AP count (%d)\n", bss_list->count)); bi = next_bss(bss_list, bi); for_each_bss(bss_list, bi, i) { err = wl_inform_single_bss(wl, bi); if (err) break; } return err; } static s32 wl_inform_single_bss(struct wl_cfg80211_priv *wl, struct wl_bss_info *bi) { struct wiphy *wiphy = wl_to_wiphy(wl); struct ieee80211_mgmt *mgmt; struct ieee80211_channel *channel; struct wl_cfg80211_bss_info *notif_bss_info; struct wl_cfg80211_scan_req *sr = wl_to_sr(wl); struct beacon_proberesp *beacon_proberesp; struct cfg80211_bss *cbss = NULL; s32 mgmt_type; u32 signal; u32 freq; s32 err = 0; u8 *notify_ie; size_t notify_ielen; if (dtoh32(bi->length) > WL_BSS_INFO_MAX) { WL_DBG(("Beacon is larger than buffer. Discarding\n")); return err; } notif_bss_info = kzalloc(sizeof(*notif_bss_info) + sizeof(*mgmt) - sizeof(u8) + WL_BSS_INFO_MAX, GFP_KERNEL); if (!notif_bss_info) { WL_ERR(("notif_bss_info alloc failed\n")); return -ENOMEM; } mgmt = (struct ieee80211_mgmt *)notif_bss_info->frame_buf; notif_bss_info->channel = bi->ctl_ch ? bi->ctl_ch : CHSPEC_CHANNEL(bi->chanspec); notif_bss_info->rssi = bi->RSSI; memcpy(mgmt->bssid, &bi->BSSID, ETHER_ADDR_LEN); mgmt_type = wl->active_scan ? IEEE80211_STYPE_PROBE_RESP : IEEE80211_STYPE_BEACON; if (!memcmp(bi->SSID, sr->ssid.SSID, bi->SSID_len)) { mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | mgmt_type); } beacon_proberesp = wl->active_scan ? (struct beacon_proberesp *)&mgmt->u.probe_resp : (struct beacon_proberesp *)&mgmt->u.beacon; beacon_proberesp->timestamp = 0; beacon_proberesp->beacon_int = cpu_to_le16(bi->beacon_period); beacon_proberesp->capab_info = cpu_to_le16(bi->capability); wl_rst_ie(wl); wl_mrg_ie(wl, ((u8 *) bi) + bi->ie_offset, bi->ie_length); wl_cp_ie(wl, beacon_proberesp->variable, WL_BSS_INFO_MAX - offsetof(struct wl_cfg80211_bss_info, frame_buf)); notif_bss_info->frame_len = offsetof(struct ieee80211_mgmt, u.beacon.variable) + wl_get_ielen(wl); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 39) freq = ieee80211_channel_to_frequency(notif_bss_info->channel, (notif_bss_info->channel <= CH_MAX_2G_CHANNEL) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ); #else freq = ieee80211_channel_to_frequency(notif_bss_info->channel); #endif if (freq == 0) { WL_ERR(("Invalid channel, fail to chcnage channel to freq\n")); kfree(notif_bss_info); return -EINVAL; } channel = ieee80211_get_channel(wiphy, freq); if (unlikely(!channel)) { WL_ERR(("ieee80211_get_channel error\n")); kfree(notif_bss_info); return -EINVAL; } WL_DBG(("SSID : \"%s\", rssi %d, channel %d, capability : 0x04%x, bssid %pM\n", bi->SSID, notif_bss_info->rssi, notif_bss_info->channel, mgmt->u.beacon.capab_info, &bi->BSSID)); signal = notif_bss_info->rssi * 100; cbss = cfg80211_inform_bss_frame(wiphy, channel, mgmt, le16_to_cpu(notif_bss_info->frame_len), signal, GFP_KERNEL); if (unlikely(!cbss)) { WL_ERR(("cfg80211_inform_bss_frame error\n")); kfree(notif_bss_info); return -EINVAL; } notify_ie = (u8 *)bi + le16_to_cpu(bi->ie_offset); notify_ielen = le32_to_cpu(bi->ie_length); #if LINUX_VERSION_CODE < KERNEL_VERSION(3, 18, 0) cbss = cfg80211_inform_bss(wiphy, channel, (const u8 *)(bi->BSSID.octet), 0, beacon_proberesp->capab_info, beacon_proberesp->beacon_int, (const u8 *)notify_ie, notify_ielen, signal, GFP_KERNEL); #else cbss = cfg80211_inform_bss(wiphy, channel, CFG80211_BSS_FTYPE_UNKNOWN, (const u8 *)(bi->BSSID.octet), 0, beacon_proberesp->capab_info, beacon_proberesp->beacon_int, (const u8 *)notify_ie, notify_ielen, signal, GFP_KERNEL); #endif if (unlikely(!cbss)) return -ENOMEM; #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0) cfg80211_put_bss(wiphy, cbss); #else cfg80211_put_bss(cbss); #endif kfree(notif_bss_info); return err; } static s32 wl_notify_connect_status(struct wl_cfg80211_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data) { s32 err = 0; u32 event = EVENT_TYPE(e); u16 flags = EVENT_FLAGS(e); u32 status = EVENT_STATUS(e); #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 15, 0) struct ieee80211_channel *channel = NULL; struct wiphy *wiphy; u32 chanspec, chan; u32 freq, band; #endif WL_DBG(("\n")); if (!wl_is_ibssmode(wl)) { if (event == WLC_E_LINK && (flags & WLC_EVENT_MSG_LINK)) { wl_link_up(wl); wl_bss_connect_done(wl, ndev, e, data, true); wl->profile->active = true; } else if ((event == WLC_E_LINK && ~(flags & WLC_EVENT_MSG_LINK)) || event == WLC_E_DEAUTH_IND || event == WLC_E_DISASSOC_IND) { #if LINUX_VERSION_CODE < KERNEL_VERSION(4,2,0) cfg80211_disconnected(ndev, 0, NULL, 0, GFP_KERNEL); #else cfg80211_disconnected(ndev, 0, NULL, 0, false, GFP_KERNEL); #endif clear_bit(WL_STATUS_CONNECTED, &wl->status); wl_link_down(wl); wl_init_prof(wl->profile); } else if (event == WLC_E_SET_SSID && status == WLC_E_STATUS_NO_NETWORKS) { wl_bss_connect_done(wl, ndev, e, data, false); } else { WL_DBG(("no action (BSS mode)\n")); } } else { if (event == WLC_E_JOIN) { WL_DBG(("joined in IBSS network\n")); } if (event == WLC_E_START) { WL_DBG(("started IBSS network\n")); } if (event == WLC_E_JOIN || event == WLC_E_START) { wl_link_up(wl); wl_get_assoc_ies(wl); memcpy(&wl->bssid, &e->addr, ETHER_ADDR_LEN); wl_update_bss_info(wl); #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 15, 0) wiphy = wl_to_wiphy(wl); err = wl_dev_intvar_get(ndev, "chanspec", &chanspec); if (err) { WL_ERR(("Could not get chanspec, err %d\n", err)); return err; } chan = wf_chspec_ctlchan(chanspec); band = (chan <= CH_MAX_2G_CHANNEL) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; freq = ieee80211_channel_to_frequency(chan, band); channel = ieee80211_get_channel(wiphy, freq); cfg80211_ibss_joined(ndev, (u8 *)&wl->bssid, channel, GFP_KERNEL); #else cfg80211_ibss_joined(ndev, (u8 *)&wl->bssid, GFP_KERNEL); #endif set_bit(WL_STATUS_CONNECTED, &wl->status); wl->profile->active = true; } else if ((event == WLC_E_LINK && ~(flags & WLC_EVENT_MSG_LINK)) || event == WLC_E_DEAUTH_IND || event == WLC_E_DISASSOC_IND) { clear_bit(WL_STATUS_CONNECTED, &wl->status); wl_link_down(wl); wl_init_prof(wl->profile); } else if (event == WLC_E_SET_SSID && status == WLC_E_STATUS_NO_NETWORKS) { WL_DBG(("no action - join fail (IBSS mode)\n")); } else { WL_DBG(("no action (IBSS mode)\n")); } } return err; } static s32 wl_notify_roaming_status(struct wl_cfg80211_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data) { s32 err = 0; u32 status = EVENT_STATUS(e); WL_DBG(("\n")); if (status == WLC_E_STATUS_SUCCESS) { err = wl_bss_roaming_done(wl, ndev, e, data); wl->profile->active = true; } return err; } static __used s32 wl_dev_bufvar_set(struct net_device *dev, s8 *name, s8 *buf, s32 len) { struct wl_cfg80211_priv *wl = ndev_to_wl(dev); u32 buflen; buflen = bcm_mkiovar(name, buf, len, wl->ioctl_buf, WL_IOCTL_LEN_MAX); BUG_ON(!buflen); return wl_dev_ioctl(dev, WLC_SET_VAR, wl->ioctl_buf, buflen); } static s32 wl_dev_bufvar_get(struct net_device *dev, s8 *name, s8 *buf, s32 buf_len) { struct wl_cfg80211_priv *wl = ndev_to_wl(dev); u32 len; s32 err = 0; len = bcm_mkiovar(name, NULL, 0, wl->ioctl_buf, WL_IOCTL_LEN_MAX); BUG_ON(!len); err = wl_dev_ioctl(dev, WLC_GET_VAR, (void *)wl->ioctl_buf, WL_IOCTL_LEN_MAX); if (err) { WL_INF(("error (%d)\n", err)); return err; } memcpy(buf, wl->ioctl_buf, buf_len); return err; } static s32 wl_get_assoc_ies(struct wl_cfg80211_priv *wl) { struct net_device *ndev = wl_to_ndev(wl); struct wl_cfg80211_assoc_ielen *assoc_info; struct wl_cfg80211_connect_info *conn_info = wl_to_conn(wl); u32 req_len; u32 resp_len; s32 err = 0; err = wl_dev_bufvar_get(ndev, "assoc_info", wl->extra_buf, WL_ASSOC_INFO_MAX); if (err) { WL_ERR(("could not get assoc info (%d)\n", err)); return err; } assoc_info = (struct wl_cfg80211_assoc_ielen *)wl->extra_buf; req_len = assoc_info->req_len; resp_len = assoc_info->resp_len; if (req_len) { err = wl_dev_bufvar_get(ndev, "assoc_req_ies", wl->extra_buf, WL_ASSOC_INFO_MAX); if (err) { WL_ERR(("could not get assoc req (%d)\n", err)); return err; } conn_info->req_ie_len = req_len; conn_info->req_ie = kmemdup(wl->extra_buf, conn_info->req_ie_len, GFP_KERNEL); } else { conn_info->req_ie_len = 0; conn_info->req_ie = NULL; } if (resp_len) { err = wl_dev_bufvar_get(ndev, "assoc_resp_ies", wl->extra_buf, WL_ASSOC_INFO_MAX); if (err) { WL_ERR(("could not get assoc resp (%d)\n", err)); return err; } conn_info->resp_ie_len = resp_len; conn_info->resp_ie = kmemdup(wl->extra_buf, conn_info->resp_ie_len, GFP_KERNEL); } else { conn_info->resp_ie_len = 0; conn_info->resp_ie = NULL; } WL_DBG(("req len (%d) resp len (%d)\n", conn_info->req_ie_len, conn_info->resp_ie_len)); return err; } static void wl_ch_to_chanspec(struct ieee80211_channel *chan, struct wl_join_params *join_params, size_t *join_params_size) { chanspec_t chanspec = 0; if (chan) { join_params->params.chanspec_num = 1; join_params->params.chanspec_list[0] = ieee80211_frequency_to_channel(chan->center_freq); if (chan->band == IEEE80211_BAND_2GHZ) { chanspec |= WL_CHANSPEC_BAND_2G; } else if (chan->band == IEEE80211_BAND_5GHZ) { chanspec |= WL_CHANSPEC_BAND_5G; } else { WL_ERR(("Unknown band\n")); BUG(); } chanspec |= WL_CHANSPEC_BW_20; *join_params_size += WL_ASSOC_PARAMS_FIXED_SIZE + join_params->params.chanspec_num * sizeof(chanspec_t); join_params->params.chanspec_list[0] &= WL_CHANSPEC_CHAN_MASK; join_params->params.chanspec_list[0] |= chanspec; join_params->params.chanspec_list[0] = htodchanspec(join_params->params.chanspec_list[0]); join_params->params.chanspec_num = htod32(join_params->params.chanspec_num); WL_DBG(("join_params->params.chanspec_list[0]= %#X, channel %d, chanspec %#X\n", join_params->params.chanspec_list[0], join_params->params.chanspec_list[0], chanspec)); } } static s32 wl_update_bss_info(struct wl_cfg80211_priv *wl) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0) struct wiphy *wiphy = wl_to_wiphy(wl); #endif struct cfg80211_bss *bss; struct wl_bss_info *bi; struct wlc_ssid *ssid; struct bcm_tlv *tim; s32 dtim_period; size_t ie_len; u8 *ie; s32 err = 0; ssid = &wl->profile->ssid; bss = cfg80211_get_bss(wl_to_wiphy(wl), NULL, (s8 *)&wl->bssid, ssid->SSID, ssid->SSID_len, WLAN_CAPABILITY_ESS, WLAN_CAPABILITY_ESS); rtnl_lock(); if (!bss) { WL_DBG(("Could not find the AP\n")); *(u32 *) wl->extra_buf = htod32(WL_EXTRA_BUF_MAX); err = wl_dev_ioctl(wl_to_ndev(wl), WLC_GET_BSS_INFO, wl->extra_buf, WL_EXTRA_BUF_MAX); if (err) { WL_ERR(("Could not get bss info %d\n", err)); goto update_bss_info_out; } bi = (struct wl_bss_info *)(wl->extra_buf + 4); if (memcmp(&bi->BSSID, &wl->bssid, ETHER_ADDR_LEN)) { err = -EIO; goto update_bss_info_out; } err = wl_inform_single_bss(wl, bi); if (err) goto update_bss_info_out; ie = ((u8 *)bi) + bi->ie_offset; ie_len = bi->ie_length; } else { WL_DBG(("Found the AP in the list - BSSID %pM\n", bss->bssid)); #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0) ie = (u8 *)(bss->ies->data); ie_len = bss->ies->len; #else ie = bss->information_elements; ie_len = bss->len_information_elements; #endif wl->conf->channel = *bss->channel; #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0) cfg80211_put_bss(wiphy, bss); #else cfg80211_put_bss(bss); #endif } tim = bcm_parse_tlvs(ie, ie_len, WLAN_EID_TIM); if (tim) { dtim_period = tim->data[1]; } else { err = wl_dev_ioctl(wl_to_ndev(wl), WLC_GET_DTIMPRD, &dtim_period, sizeof(dtim_period)); if (err) { WL_ERR(("WLC_GET_DTIMPRD error (%d)\n", err)); goto update_bss_info_out; } } update_bss_info_out: rtnl_unlock(); return err; } static s32 wl_bss_roaming_done(struct wl_cfg80211_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data) { struct wl_cfg80211_connect_info *conn_info = wl_to_conn(wl); s32 err = 0; wl_get_assoc_ies(wl); memcpy(wl->profile->bssid, &e->addr, ETHER_ADDR_LEN); memcpy(&wl->bssid, &e->addr, ETHER_ADDR_LEN); wl_update_bss_info(wl); cfg80211_roamed(ndev, #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 39) &wl->conf->channel, #endif (u8 *)&wl->bssid, conn_info->req_ie, conn_info->req_ie_len, conn_info->resp_ie, conn_info->resp_ie_len, GFP_KERNEL); WL_DBG(("Report roaming result\n")); set_bit(WL_STATUS_CONNECTED, &wl->status); return err; } static s32 wl_bss_connect_done(struct wl_cfg80211_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data, bool completed) { struct wl_cfg80211_connect_info *conn_info = wl_to_conn(wl); s32 err = 0; if (wl->scan_request) { WL_DBG(("%s: Aborting scan\n", __FUNCTION__)); cfg80211_scan_done(wl->scan_request, true); wl->scan_request = NULL; } if (test_and_clear_bit(WL_STATUS_CONNECTING, &wl->status)) { if (completed) { wl_get_assoc_ies(wl); memcpy(&wl->bssid, &e->addr, ETHER_ADDR_LEN); memcpy(wl->profile->bssid, &e->addr, ETHER_ADDR_LEN); wl_update_bss_info(wl); set_bit(WL_STATUS_CONNECTED, &wl->status); } WL_DBG(("Reporting BSS network join result \"%s\"\n", wl->profile->ssid.SSID)); cfg80211_connect_result(ndev, (u8 *)&wl->bssid, conn_info->req_ie, conn_info->req_ie_len, conn_info->resp_ie, conn_info->resp_ie_len, completed ? WLAN_STATUS_SUCCESS : WLAN_STATUS_AUTH_TIMEOUT, GFP_KERNEL); WL_DBG(("Connection %s\n", completed ? "Succeeded" : "FAILed")); } return err; } static s32 wl_notify_mic_status(struct wl_cfg80211_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data) { u16 flags = EVENT_FLAGS(e); enum nl80211_key_type key_type; WL_DBG(("\n")); rtnl_lock(); if (flags & WLC_EVENT_MSG_GROUP) key_type = NL80211_KEYTYPE_GROUP; else key_type = NL80211_KEYTYPE_PAIRWISE; cfg80211_michael_mic_failure(ndev, (u8 *)&e->addr, key_type, -1, NULL, GFP_KERNEL); rtnl_unlock(); return 0; } static s32 wl_notify_scan_status(struct wl_cfg80211_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data) { struct channel_info channel_inform; struct wl_scan_results *bss_list; u32 buflen; s32 err = 0; WL_DBG(("\n")); rtnl_lock(); err = wl_dev_ioctl(ndev, WLC_GET_CHANNEL, &channel_inform, sizeof(channel_inform)); if (err) { WL_ERR(("scan busy (%d)\n", err)); goto scan_done_out; } channel_inform.scan_channel = dtoh32(channel_inform.scan_channel); if (channel_inform.scan_channel) { WL_DBG(("channel_inform.scan_channel (%d)\n", channel_inform.scan_channel)); } for (buflen = WL_SCAN_BUF_BASE; ; ) { bss_list = (struct wl_scan_results *) kmalloc(buflen, GFP_KERNEL); if (!bss_list) { WL_ERR(("%s Out of memory for scan results, (%d)\n", ndev->name, err)); goto scan_done_out; } memset(bss_list, 0, buflen); bss_list->buflen = htod32(buflen); err = wl_dev_ioctl(ndev, WLC_SCAN_RESULTS, bss_list, buflen); if (!err) { break; } else if (err == -E2BIG) { kfree(bss_list); buflen *= 2; } else { WL_ERR(("%s Scan_results error (%d)\n", ndev->name, err)); kfree(bss_list); err = -EINVAL; goto scan_done_out; } } bss_list->buflen = dtoh32(bss_list->buflen); bss_list->version = dtoh32(bss_list->version); bss_list->count = dtoh32(bss_list->count); err = wl_inform_bss(wl, bss_list); kfree(bss_list); scan_done_out: if (wl->scan_request) { cfg80211_scan_done(wl->scan_request, false); wl->scan_request = NULL; } rtnl_unlock(); return err; } static void wl_init_conf(struct wl_cfg80211_conf *conf) { conf->mode = (u32)-1; conf->frag_threshold = (u32)-1; conf->rts_threshold = (u32)-1; conf->retry_short = (u32)-1; conf->retry_long = (u32)-1; conf->tx_power = -1; } static void wl_init_prof(struct wl_cfg80211_profile *prof) { memset(prof, 0, sizeof(*prof)); } static void wl_init_eloop_handler(struct wl_cfg80211_event_loop *el) { memset(el, 0, sizeof(*el)); el->handler[WLC_E_SCAN_COMPLETE] = wl_notify_scan_status; el->handler[WLC_E_JOIN] = wl_notify_connect_status; el->handler[WLC_E_START] = wl_notify_connect_status; el->handler[WLC_E_LINK] = wl_notify_connect_status; el->handler[WLC_E_NDIS_LINK] = wl_notify_connect_status; el->handler[WLC_E_SET_SSID] = wl_notify_connect_status; el->handler[WLC_E_DISASSOC_IND] = wl_notify_connect_status; el->handler[WLC_E_DEAUTH_IND] = wl_notify_connect_status; el->handler[WLC_E_ROAM] = wl_notify_roaming_status; el->handler[WLC_E_MIC_ERROR] = wl_notify_mic_status; } static s32 wl_init_priv_mem(struct wl_cfg80211_priv *wl) { wl->conf = (void *)kzalloc(sizeof(*wl->conf), GFP_KERNEL); if (!wl->conf) { WL_ERR(("wl_cfg80211_conf alloc failed\n")); goto init_priv_mem_out; } wl->profile = (void *)kzalloc(sizeof(*wl->profile), GFP_KERNEL); if (!wl->profile) { WL_ERR(("wl_cfg80211_profile alloc failed\n")); goto init_priv_mem_out; } wl->scan_req_int = (void *)kzalloc(sizeof(*wl->scan_req_int), GFP_KERNEL); if (!wl->scan_req_int) { WL_ERR(("Scan req alloc failed\n")); goto init_priv_mem_out; } wl->ioctl_buf = (void *)kzalloc(WL_IOCTL_LEN_MAX, GFP_KERNEL); if (!wl->ioctl_buf) { WL_ERR(("Ioctl buf alloc failed\n")); goto init_priv_mem_out; } wl->extra_buf = (void *)kzalloc(WL_EXTRA_BUF_MAX, GFP_KERNEL); if (!wl->extra_buf) { WL_ERR(("Extra buf alloc failed\n")); goto init_priv_mem_out; } wl->pmk_list = (void *)kzalloc(sizeof(*wl->pmk_list), GFP_KERNEL); if (!wl->pmk_list) { WL_ERR(("pmk list alloc failed\n")); goto init_priv_mem_out; } return 0; init_priv_mem_out: wl_deinit_priv_mem(wl); return -ENOMEM; } static void wl_deinit_priv_mem(struct wl_cfg80211_priv *wl) { kfree(wl->conf); wl->conf = NULL; kfree(wl->profile); wl->profile = NULL; kfree(wl->scan_req_int); wl->scan_req_int = NULL; kfree(wl->ioctl_buf); wl->ioctl_buf = NULL; kfree(wl->extra_buf); wl->extra_buf = NULL; kfree(wl->pmk_list); wl->pmk_list = NULL; } static s32 wl_create_event_handler(struct wl_cfg80211_priv *wl) { sema_init(&wl->event_sync, 0); wl->event_tsk = kthread_run(wl_event_handler, wl, "wl_event_handler"); if (IS_ERR(wl->event_tsk)) { wl->event_tsk = NULL; WL_ERR(("failed to create event thread\n")); return -ENOMEM; } return 0; } static void wl_destroy_event_handler(struct wl_cfg80211_priv *wl) { if (wl->event_tsk) { send_sig(SIGTERM, wl->event_tsk, 1); kthread_stop(wl->event_tsk); wl->event_tsk = NULL; } } static s32 wl_init_cfg80211_priv(struct wl_cfg80211_priv *wl, struct wireless_dev *wdev) { s32 err = 0; wl->wdev = wdev; wl->scan_request = NULL; wl->active_scan = true; wl_init_eq(wl); err = wl_init_priv_mem(wl); if (err) return err; if (wl_create_event_handler(wl)) return -ENOMEM; wl_init_eloop_handler(&wl->el); if (err) return err; wl_init_conf(wl->conf); wl_init_prof(wl->profile); wl_link_down(wl); return err; } static void wl_deinit_cfg80211_priv(struct wl_cfg80211_priv *wl) { wl_destroy_event_handler(wl); wl_flush_eq(wl); wl_link_down(wl); wl_deinit_priv_mem(wl); } s32 wl_cfg80211_attach(struct net_device *ndev, struct device *dev, int passive) { struct wireless_dev *wdev; struct wl_cfg80211_priv *wl; s32 err = 0; if (!ndev) { WL_ERR(("ndev is invaild\n")); return -ENODEV; } err = wl_alloc_wdev(dev, &wdev); if (err < 0) { return err; } wdev->iftype = wl_mode_to_nl80211_iftype(WL_MODE_BSS); wl = wdev_to_wl(wdev); ndev->ieee80211_ptr = wdev; SET_NETDEV_DEV(ndev, wiphy_dev(wdev->wiphy)); wdev->netdev = ndev; err = wl_init_cfg80211_priv(wl, wdev); if (err) { WL_ERR(("Failed to init iwm_priv (%d)\n", err)); goto cfg80211_attach_out; } wl->passive = !!passive; if (!err) { WL_INF(("Registered CFG80211 phy\n")); } return err; cfg80211_attach_out: wl_free_wdev(wl); return err; } void wl_cfg80211_detach(struct net_device *ndev) { struct wl_cfg80211_priv *wl; if (ndev->ieee80211_ptr == NULL) { WL_ERR(( "NULL ndev->ieee80211ptr, unable to deref wl\n")); return; } wl = ndev_to_wl(ndev); wl_deinit_cfg80211_priv(wl); wl_free_wdev(wl); } static void wl_wakeup_event(struct wl_cfg80211_priv *wl) { up(&wl->event_sync); } static s32 wl_event_handler(void *data) { struct wl_cfg80211_priv *wl = (struct wl_cfg80211_priv *)data; struct wl_cfg80211_event_q *e; allow_signal(SIGTERM); while (!down_interruptible(&wl->event_sync)) { if (kthread_should_stop()) break; e = wl_deq_event(wl); if (!e) { WL_ERR(("eqeue empty..\n")); BUG(); } if (wl->el.handler[e->etype]) { WL_DBG(("event type (%d)\n", e->etype)); wl->el.handler[e->etype] (wl, wl_to_ndev(wl), &e->emsg, e->edata); } else { WL_DBG(("Unknown Event (%d): ignoring\n", e->etype)); } wl_put_event(e); } WL_DBG(("%s was terminated\n", __func__)); return 0; } void wl_cfg80211_event(struct net_device *ndev, const wl_event_msg_t * e, void *data) { u32 event_type = EVENT_TYPE(e); struct wl_cfg80211_priv *wl = ndev_to_wl(ndev); #if defined(WL_DBGMSG_ENABLE) s8 *estr = (event_type <= sizeof(wl_dbg_estr) / WL_DBG_ESTR_MAX - 1) ? wl_dbg_estr[event_type] : (s8 *) "Unknown"; WL_DBG(("event_type (%d):" "WLC_E_" "%s\n", event_type, estr)); #endif if (!wl_enq_event(wl, event_type, e, data)) wl_wakeup_event(wl); } static void wl_init_eq(struct wl_cfg80211_priv *wl) { wl_init_eq_lock(wl); INIT_LIST_HEAD(&wl->eq_list); } static void wl_flush_eq(struct wl_cfg80211_priv *wl) { struct wl_cfg80211_event_q *e; wl_lock_eq(wl); while (!list_empty(&wl->eq_list)) { e = list_first_entry(&wl->eq_list, struct wl_cfg80211_event_q, eq_list); list_del(&e->eq_list); kfree(e); } wl_unlock_eq(wl); } static struct wl_cfg80211_event_q *wl_deq_event(struct wl_cfg80211_priv *wl) { struct wl_cfg80211_event_q *e = NULL; wl_lock_eq(wl); if (!list_empty(&wl->eq_list)) { e = list_first_entry(&wl->eq_list, struct wl_cfg80211_event_q, eq_list); list_del(&e->eq_list); } wl_unlock_eq(wl); return e; } static s32 wl_enq_event(struct wl_cfg80211_priv *wl, u32 event, const wl_event_msg_t *msg, void *data) { struct wl_cfg80211_event_q *e; s32 err = 0; e = kzalloc(sizeof(struct wl_cfg80211_event_q), GFP_ATOMIC); if (!e) { WL_ERR(("event alloc failed\n")); return -ENOMEM; } e->etype = event; memcpy(&e->emsg, msg, sizeof(wl_event_msg_t)); if (data) { } spin_lock(&wl->eq_lock); list_add_tail(&e->eq_list, &wl->eq_list); spin_unlock(&wl->eq_lock); return err; } static void wl_put_event(struct wl_cfg80211_event_q *e) { kfree(e); } static s32 wl_set_mode(struct net_device *ndev, s32 iftype) { s32 infra = 0; s32 ap = 0; s32 err = 0; switch (iftype) { case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_WDS: WL_ERR(("type (%d) : currently we do not support this mode\n", iftype)); err = -EINVAL; return err; case NL80211_IFTYPE_ADHOC: break; case NL80211_IFTYPE_STATION: infra = 1; break; default: err = -EINVAL; WL_ERR(("invalid type (%d)\n", iftype)); return err; } infra = htod32(infra); ap = htod32(ap); WL_DBG(("%s ap (%d), infra (%d)\n", ndev->name, ap, infra)); err = wl_dev_ioctl(ndev, WLC_SET_INFRA, &infra, sizeof(infra)); if (err) { WL_ERR(("WLC_SET_INFRA error (%d)\n", err)); return err; } err = wl_dev_ioctl(ndev, WLC_SET_AP, &ap, sizeof(ap)); if (err) { WL_ERR(("WLC_SET_AP error (%d)\n", err)); return err; } return 0; } static void wl_update_wowl(struct net_device *ndev) { #ifdef CONFIG_PM struct wl_cfg80211_priv *wl = ndev_to_wl(ndev); struct wireless_dev *wdev = ndev->ieee80211_ptr; s32 offloads = 0; s32 err = 0; err = wl_dev_bufvar_get(wl_to_ndev(wl), "offloads", (s8 *)&offloads, sizeof(offloads)); if (err == 0 && offloads == 1) { WL_INF(("Supports offloads\n")); wl->offloads = true; } else { WL_INF(("No offloads supported\n")); wl->offloads = false; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 39) #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0) wdev->wiphy->wowlan = NULL; #else memset(&wdev->wiphy->wowlan, 0, sizeof(struct wiphy_wowlan_support)); #endif #endif } #endif } static s32 wl_update_wiphybands(struct wl_cfg80211_priv *wl) { struct wiphy *wiphy; s32 phy_list; s8 phy; s32 err = 0; err = wl_dev_ioctl(wl_to_ndev(wl), WLC_GET_PHYLIST, &phy_list, sizeof(phy_list)); if (err) { WL_ERR(("error (%d)\n", err)); return err; } phy = ((char *)&phy_list)[0]; WL_DBG(("%c phy\n", phy)); if (phy == 'n' || phy == 'a' || phy == 'v') { wiphy = wl_to_wiphy(wl); wiphy->bands[IEEE80211_BAND_5GHZ] = &__wl_band_5ghz_n; } return err; } s32 wl_cfg80211_up(struct net_device *ndev) { struct wl_cfg80211_priv *wl = ndev_to_wl(ndev); s32 err = 0; struct wireless_dev *wdev = ndev->ieee80211_ptr; wl_set_mode(ndev, wdev->iftype); err = wl_update_wiphybands(wl); if (err) { return err; } wl_update_wowl(ndev); return 0; } s32 wl_cfg80211_down(struct net_device *ndev) { struct wl_cfg80211_priv *wl = ndev_to_wl(ndev); s32 err = 0; if (wl->scan_request) { cfg80211_scan_done(wl->scan_request, true); wl->scan_request = NULL; } return err; } static bool wl_is_ibssmode(struct wl_cfg80211_priv *wl) { return wl->conf->mode == WL_MODE_IBSS; } static void wl_rst_ie(struct wl_cfg80211_priv *wl) { struct wl_cfg80211_ie *ie = wl_to_ie(wl); ie->offset = 0; } static __used s32 wl_add_ie(struct wl_cfg80211_priv *wl, u8 t, u8 l, u8 *v) { struct wl_cfg80211_ie *ie = wl_to_ie(wl); s32 err = 0; if (ie->offset + l + 2 > WL_TLV_INFO_MAX) { WL_ERR(("ei crosses buffer boundary\n")); return -ENOSPC; } ie->buf[ie->offset] = t; ie->buf[ie->offset + 1] = l; memcpy(&ie->buf[ie->offset + 2], v, l); ie->offset += l + 2; return err; } static s32 wl_mrg_ie(struct wl_cfg80211_priv *wl, u8 *ie_stream, u16 ie_size) { struct wl_cfg80211_ie *ie = wl_to_ie(wl); s32 err = 0; if (ie->offset + ie_size > WL_TLV_INFO_MAX) { WL_ERR(("ei_stream crosses buffer boundary\n")); return -ENOSPC; } memcpy(&ie->buf[ie->offset], ie_stream, ie_size); ie->offset += ie_size; return err; } static s32 wl_cp_ie(struct wl_cfg80211_priv *wl, u8 *dst, u16 dst_size) { struct wl_cfg80211_ie *ie = wl_to_ie(wl); s32 err = 0; if (ie->offset > dst_size) { WL_ERR(("dst_size is not enough\n")); return -ENOSPC; } memcpy(dst, &ie->buf[0], ie->offset); return err; } static u32 wl_get_ielen(struct wl_cfg80211_priv *wl) { struct wl_cfg80211_ie *ie = wl_to_ie(wl); return ie->offset; } static void wl_link_up(struct wl_cfg80211_priv *wl) { WL_DBG(("\n")); } static void wl_link_down(struct wl_cfg80211_priv *wl) { struct wl_cfg80211_connect_info *conn_info = wl_to_conn(wl); WL_DBG(("\n")); kfree(conn_info->req_ie); conn_info->req_ie = NULL; conn_info->req_ie_len = 0; kfree(conn_info->resp_ie); conn_info->resp_ie = NULL; conn_info->resp_ie_len = 0; } static void wl_lock_eq(struct wl_cfg80211_priv *wl) { spin_lock_irq(&wl->eq_lock); } static void wl_unlock_eq(struct wl_cfg80211_priv *wl) { spin_unlock_irq(&wl->eq_lock); } static void wl_init_eq_lock(struct wl_cfg80211_priv *wl) { spin_lock_init(&wl->eq_lock); } #endif