1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
/*
* The Mana World Server
* Copyright 2004 The Mana World Development Team
*
* This file is part of The Mana World.
*
* The Mana World is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or any later version.
*
* The Mana World is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with The Mana World; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Id$
*/
#include "collisiondetection.hpp"
#include <cmath>
#include "point.h"
#include "utils/mathutils.h"
bool
Collision::circleWithCirclesector(const Point &circlePos, int circleRadius,
const Point &secPos, int secRadius,
float secAngle, float secSize)
{
float targetAngle;
// Calculate distance
int distX = circlePos.x - secPos.x;
int distY = circlePos.y - secPos.y;
float invDist = utils::math::fastInvSqrt(distX * distX + distY * distY);
float dist = 1.0f / invDist;
// If out of range we can't hit it
if (dist > secRadius + circleRadius) {
return false;
}
// If we are standing in it we hit it in any case
if (dist < circleRadius) {
return true;
}
// Calculate target angle
if (distX > 0)
{
targetAngle = asin(-distY * invDist);
} else {
if (distY < 0)
{
targetAngle = M_PI - asin(-distY * invDist);
} else {
targetAngle = -M_PI - asin(-distY * invDist);
}
}
// Calculate difference from segment angle
float targetDiff = fabs(targetAngle - secAngle);
if (targetDiff > M_PI)
{
targetDiff = fabs(targetDiff - M_PI * 2);
}
// Add hit circle
secSize += asin(circleRadius * invDist) * 2;
return (targetDiff < secSize * 0.5f);
}
/**
* Collision of a Disk with a Circle-Sector
*
* For a detailled explanation of this function please see:
* http://wiki.themanaworld.org/index.php/Collision_determination
*/
bool
Collision::diskWithCircleSector(const Point &diskCenter, int diskRadius,
const Point §orCenter, int sectorRadius,
int halfTopAngle, int placeAngle)
{
// Converting the radii to float
float R = (float) sectorRadius;
float Rp = (float) diskRadius;
// Transform to the primary coordinate system
float Px = diskCenter.x - sectorCenter.x;
float Py = diskCenter.y - sectorCenter.y;
// The values of the trigonomic functions (only have to be computed once)
float sinAlpha = utils::math::cachedSin(halfTopAngle);
float cosAlpha = utils::math::cachedCos(halfTopAngle);
float sinBeta = utils::math::cachedSin(placeAngle);
float cosBeta = utils::math::cachedCos(placeAngle);
/**
* This bounding circle implementation can be used up and until a
* half-top-angle of +/- 85 degrees. The bounding circle becomes
* infinitly large at 90 degrees. Above about 60 degrees a bounding
* half-circle with radius R becomes more efficient.
* (The additional check for a region 1 collision can then be scrapped.)
*/
// Calculating the coordinates of the disk's center in coordinate system 4
float Px1 = Px * cosBeta + Py * sinBeta;
float Py1 = Py * cosBeta - Px * sinBeta;
// Check for an intersection with the bounding circle
// (>) : touching is accepted
if ((cosAlpha * Px1 * Px1 + cosAlpha * Py1 * Py1 - Px1 * R)
> (Rp * Rp * cosAlpha + Rp * R)) return false;
// Check for a region 4 collision
if ((Px*Px + Py*Py) <= (Rp*Rp)) return true;
// Calculating the coordinates of the disk's center in coordinate system 1
Px1 = Px * (cosAlpha * cosBeta + sinAlpha * sinBeta)
+ Py * (cosAlpha * sinBeta - sinAlpha * cosBeta);
Py1 = Py * (cosAlpha * cosBeta + sinAlpha * sinBeta)
- Px * (cosAlpha * sinBeta - sinAlpha * cosBeta);
// Check if P is in region 5 (using coordinate system 1)
if ((Px1 >= 0.0f) && (Px1 <= R) && (Py1 <= 0.0f))
{
// Return true on intersection, false otherwise
// (>=) : touching is accepted
return (Py1 >= -1.0f * Rp);
}
// Check if P is in region 3 (using coordinate system 1)
if ((Px1 > R) && (Py1 <= 0.0f))
{
// Calculating the vector from point A to the disk center
float distAx = Px - R * (cosAlpha * cosBeta + sinAlpha * sinBeta);
float distAy = Py - R * (cosAlpha * sinBeta - sinAlpha * cosBeta);
// Check for a region 3 collision
return ((distAx * distAx + distAy * distAy) <= Rp * Rp);
}
// Discard, if P is in region 4 (was previously checked)
if ((Px1 < 0.0f) && (Py1 <= 0.0f)) return false;
float tan2Alpha = utils::math::cachedTan(2 * halfTopAngle);
// Check if P is in region 1 (using coordinate system 1)
if ((Px1 >= 0.0f) && (Py1 >= 0.0f) && (Py1 <= Px1 * tan2Alpha))
{
// Return true on intersection, false otherwise
// (<=) : touching is accepted
return ((Px * Px + Py * Py) <= (R * R + Rp * Rp + 2.0f * R * Rp));
}
// Calculating the coordinates of the disk's center in coordinate system 3
Px1 = Px * (cosAlpha * cosBeta - sinAlpha * sinBeta)
+ Py * (sinAlpha * cosBeta + cosAlpha * sinBeta);
Py1 = Py * (cosAlpha * cosBeta - sinAlpha * sinBeta)
- Px * (sinAlpha * cosBeta + cosAlpha * sinBeta);
// Discard, if P is in region 4 (was previously checked)
if ((Px1 < 0.0f) && (Py1 >= 0.0f)) return false;
// Check if P is in region 6 (using coordinate system 3)
if ((Px1 >= 0.0f) && (Px1 <= R) && (Py1 >= 0.0f))
{
// Return true on intersection, false otherwise
// (<=) : touching is accepted
return (Py1 <= Rp);
}
// Check if P is in region 2 (using coordinate system 3)
if ((Px1 > R) && (Py1 <= 0.0f))
{
// Calculating the vector from point B to the disk center
float distBx = Px - R * (cosAlpha * cosBeta - sinAlpha * sinBeta);
float distBy = Py - R * (cosAlpha * sinBeta + sinAlpha * cosBeta);
// Check for a region 2 collision
return ((distBx * distBx + distBy * distBy) <= (Rp * Rp));
}
// The intersection with the bounding circle is in region 4,
// but the disk and circle sector don't intersect.
return false;
}
|