/* * The Mana World * Copyright 2004 The Mana World Development Team * * This file is part of The Mana World. * * The Mana World is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * any later version. * * The Mana World is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with The Mana World; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id$ */ #include #include #include #include #include "game-server/map.hpp" MetaTile::MetaTile(): whichList(0), blockmask(0) { } Location::Location(int x, int y, MetaTile *tile): x(x), y(y), tile(tile) { } bool Location::operator< (const Location &loc) const { return tile->Fcost > loc.tile->Fcost; } Map::Map(int width, int height, int twidth, int theight): mWidth(width), mHeight(height), tileWidth(twidth), tileHeight(theight), onClosedList(1), onOpenList(2) { mMetaTiles = new MetaTile[mWidth * mHeight]; for (int i=0; i < NB_BLOCKTYPES; i++) { mOccupation[i] = new int[mWidth * mHeight]; memset(mOccupation[i], 0, mWidth * mHeight * sizeof(int)); } } Map::~Map() { delete[] mMetaTiles; for (int i=0; i < NB_BLOCKTYPES; i++) { delete[] mOccupation[i]; } } void Map::setSize(int width, int height) { this->mWidth = width; this->mHeight = height; delete[] mMetaTiles; mMetaTiles = new MetaTile[mWidth * mHeight]; for (int i=0; i < NB_BLOCKTYPES; i++) { delete[] mOccupation[i]; mOccupation[i] = new int[mWidth * mHeight]; } } void Map::blockTile(int x, int y, BlockType type) { if (type == BLOCKTYPE_NONE || x < 0 || y < 0 || x >= mWidth || y >= mHeight) { return; } int tileNum = x + y * mWidth; if (++mOccupation[type][tileNum]) { switch (type) { case BLOCKTYPE_WALL: mMetaTiles[tileNum].blockmask |= BLOCKMASK_WALL; break; case BLOCKTYPE_CHARACTER: mMetaTiles[tileNum].blockmask |= BLOCKMASK_CHARACTER; break; case BLOCKTYPE_MONSTER: mMetaTiles[tileNum].blockmask |= BLOCKMASK_MONSTER; break; default: // shut up! break; } } } void Map::freeTile(int x, int y, BlockType type) { if (type == BLOCKTYPE_NONE || x < 0 || y < 0 || x >= mWidth || y >= mHeight) { return; } int tileNum = x + y * mWidth; if (!(--mOccupation[type][tileNum])) { switch (type) { case BLOCKTYPE_WALL: mMetaTiles[tileNum].blockmask &= (BLOCKMASK_WALL xor 0xff); break; case BLOCKTYPE_CHARACTER: mMetaTiles[tileNum].blockmask &= (BLOCKMASK_CHARACTER xor 0xff); break; case BLOCKTYPE_MONSTER: mMetaTiles[tileNum].blockmask &= (BLOCKMASK_MONSTER xor 0xff); break; default: // shut up! break; } } } bool Map::getWalk(int x, int y, char walkmask) const { // You can't walk outside of the map if (x < 0 || y < 0 || x >= mWidth || y >= mHeight) { return false; } // Check if the tile is walkable return !(mMetaTiles[x + y * mWidth].blockmask & walkmask); } MetaTile* Map::getMetaTile(int x, int y) { return &mMetaTiles[x + y * mWidth]; } static int const basicCost = 100; std::list Map::findPath(int startX, int startY, int destX, int destY, unsigned char walkmask, int maxCost) { // Path to be built up (empty by default) std::list path; // Declare open list, a list with open tiles sorted on F cost std::priority_queue openList; // Return when destination not walkable if (!getWalk(destX, destY, walkmask)) return path; // Reset starting tile's G cost to 0 MetaTile *startTile = getMetaTile(startX, startY); startTile->Gcost = 0; // Add the start point to the open list openList.push(Location(startX, startY, startTile)); bool foundPath = false; // Keep trying new open tiles until no more tiles to try or target found while (!openList.empty() && !foundPath) { // Take the location with the lowest F cost from the open list, and // add it to the closed list. Location curr = openList.top(); openList.pop(); // If the tile is already on the closed list, this means it has already // been processed with a shorter path to the start point (lower G cost) if (curr.tile->whichList == onClosedList) { continue; } // Put the current tile on the closed list curr.tile->whichList = onClosedList; // Check the adjacent tiles for (int dy = -1; dy <= 1; dy++) { for (int dx = -1; dx <= 1; dx++) { // Calculate location of tile to check int x = curr.x + dx; int y = curr.y + dy; // Skip if if we're checking the same tile we're leaving from, // or if the new location falls outside of the map boundaries if ((dx == 0 && dy == 0) || (x < 0 || y < 0 || x >= mWidth || y >= mHeight)) { continue; } MetaTile *newTile = getMetaTile(x, y); // Skip if the tile is on the closed list or is not walkable if (newTile->whichList == onClosedList || newTile->blockmask & walkmask) { continue; } // When taking a diagonal step, verify that we can skip the // corner. if (dx != 0 && dy != 0) { MetaTile *t1 = getMetaTile(curr.x, curr.y + dy); MetaTile *t2 = getMetaTile(curr.x + dx, curr.y); if (t1->blockmask & walkmask && !(t2->blockmask & walkmask)) // I hope I didn't fuck this line up { continue; } } // Calculate G cost for this route, ~sqrt(2) for moving diagonal int Gcost = curr.tile->Gcost + (dx == 0 || dy == 0 ? basicCost : basicCost * 362 / 256); /* Demote an arbitrary direction to speed pathfinding by adding a defect (TODO: change depending on the desired visual effect, e.g. a cross-product defect toward destination). Important: as long as the total defect along any path is less than the basicCost, the pathfinder will still find one of the shortest paths! */ if (dx == 0 || dy == 0) { // Demote horizontal and vertical directions, so that two // consecutive directions cannot have the same Fcost. ++Gcost; } // Skip if Gcost becomes too much // Warning: probably not entirely accurate if (Gcost > maxCost * basicCost) { continue; } if (newTile->whichList != onOpenList) { // Found a new tile (not on open nor on closed list) /* Update Hcost of the new tile. The pathfinder does not work reliably if the heuristic cost is higher than the real cost. In particular, using Manhattan distance is forbidden here. */ int dx = std::abs(x - destX), dy = std::abs(y - destY); newTile->Hcost = std::abs(dx - dy) * basicCost + std::min(dx, dy) * (basicCost * 362 / 256); // Set the current tile as the parent of the new tile newTile->parentX = curr.x; newTile->parentY = curr.y; // Update Gcost and Fcost of new tile newTile->Gcost = Gcost; newTile->Fcost = newTile->Gcost + newTile->Hcost; if (x != destX || y != destY) { // Add this tile to the open list newTile->whichList = onOpenList; openList.push(Location(x, y, newTile)); } else { // Target location was found foundPath = true; } } else if (Gcost < newTile->Gcost) { // Found a shorter route. // Update Gcost and Fcost of the new tile newTile->Gcost = Gcost; newTile->Fcost = newTile->Gcost + newTile->Hcost; // Set the current tile as the parent of the new tile newTile->parentX = curr.x; newTile->parentY = curr.y; // Add this tile to the open list (it's already // there, but this instance has a lower F score) openList.push(Location(x, y, newTile)); } } } } // Two new values to indicate whether a tile is on the open or closed list, // this way we don't have to clear all the values between each pathfinding. onClosedList += 2; onOpenList += 2; // If a path has been found, iterate backwards using the parent locations // to extract it. if (foundPath) { int pathX = destX; int pathY = destY; while (pathX != startX || pathY != startY) { // Add the new path node to the start of the path list path.push_front(PATH_NODE(pathX, pathY)); // Find out the next parent MetaTile *tile = getMetaTile(pathX, pathY); pathX = tile->parentX; pathY = tile->parentY; } } return path; }