# Authors: # Jason Gerard DeRose # # Copyright (C) 2008 Red Hat # see file 'COPYING' for use and warranty information # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . """ Parameter system for command plugins. A `Param` instance can be used to describe an argument or option that a command takes, or an attribute that a command returns. The `Param` base class is not used directly, but there are many subclasses for specific Python data types (like `Str` or `Int`) and specific properties (like `Password`). To create a `Param` instance, you must always provide the parameter *name*, which should be the LDAP attribute name if the parameter describes the attribute of an LDAP entry. For example, we could create an `Str` instance describing the user's last-name attribute like this: >>> from ipalib import Str >>> sn = Str('sn') >>> sn.name 'sn' When creating a `Param`, there are also a number of optional kwargs which which can provide additional meta-data and functionality. For example, every parameter has a *cli_name*, the name used on the command-line-interface. By default the *cli_name* is the same as the *name*: >>> sn.cli_name 'sn' But often the LDAP attribute name isn't user friendly for the command-line, so you can override this with the *cli_name* kwarg: >>> sn = Str('sn', cli_name='last') >>> sn.name 'sn' >>> sn.cli_name 'last' Note that the RPC interfaces (and the internal processing pipeline) always use the parameter *name*, regardless of what the *cli_name* might be. A `Param` also has two translatable kwargs: *label* and *doc*. These must both be `Gettext` instances. They both default to a place-holder `FixMe` instance, a subclass of `Gettext` used to mark a missing translatable string: >>> sn.label FixMe('sn') >>> sn.doc FixMe('sn') The *label* is a short phrase describing the parameter. It's used on the CLI when interactively prompting for values, and as a label for form inputs in the web-UI. The *label* should start with an initial capital. For example: >>> from ipalib import _ >>> sn = Str('sn', ... cli_name='last', ... label=_('Last name'), ... ) >>> sn.label Gettext('Last name', domain='ipa', localedir=None) The *doc* is a longer description of the parameter. It's used on the CLI when displaying the help information for a command, and as extra instruction for a form input on the web-UI. By default the *doc* is the same as the *label*: >>> sn.doc Gettext('Last name', domain='ipa', localedir=None) But you can override this with the *doc* kwarg. Like the *label*, the *doc* should also start with an initial capital and should not end with any punctuation. For example: >>> sn = Str('sn', ... cli_name='last', ... label=_('Last name'), ... doc=_("The user's last name"), ... ) >>> sn.doc Gettext("The user's last name", domain='ipa', localedir=None) Demonstration aside, you should always provide at least the *label* so the various UIs are translatable. Only provide the *doc* if the parameter needs a more detailed description for clarity. """ import re from types import NoneType from util import make_repr from text import _ as ugettext from plugable import ReadOnly, lock, check_name from errors import ConversionError, RequirementError, ValidationError from errors import PasswordMismatch from constants import NULLS, TYPE_ERROR, CALLABLE_ERROR from text import Gettext, FixMe import csv from xmlrpclib import MAXINT, MININT class DefaultFrom(ReadOnly): """ Derive a default value from other supplied values. For example, say you wanted to create a default for the user's login from the user's first and last names. It could be implemented like this: >>> login = DefaultFrom(lambda first, last: first[0] + last) >>> login(first='John', last='Doe') 'JDoe' If you do not explicitly provide keys when you create a `DefaultFrom` instance, the keys are implicitly derived from your callback by inspecting ``callback.func_code.co_varnames``. The keys are available through the ``DefaultFrom.keys`` instance attribute, like this: >>> login.keys ('first', 'last') The callback is available through the ``DefaultFrom.callback`` instance attribute, like this: >>> login.callback # doctest:+ELLIPSIS at 0x...> >>> login.callback.func_code.co_varnames # The keys ('first', 'last') The keys can be explicitly provided as optional positional arguments after the callback. For example, this is equivalent to the ``login`` instance above: >>> login2 = DefaultFrom(lambda a, b: a[0] + b, 'first', 'last') >>> login2.keys ('first', 'last') >>> login2.callback.func_code.co_varnames # Not the keys ('a', 'b') >>> login2(first='John', last='Doe') 'JDoe' If any keys are missing when calling your `DefaultFrom` instance, your callback is not called and ``None`` is returned. For example: >>> login(first='John', lastname='Doe') is None True >>> login() is None True Any additional keys are simply ignored, like this: >>> login(last='Doe', first='John', middle='Whatever') 'JDoe' As above, because `DefaultFrom.__call__` takes only pure keyword arguments, they can be supplied in any order. Of course, the callback need not be a ``lambda`` expression. This third example is equivalent to both the ``login`` and ``login2`` instances above: >>> def get_login(first, last): ... return first[0] + last ... >>> login3 = DefaultFrom(get_login) >>> login3.keys ('first', 'last') >>> login3.callback.func_code.co_varnames ('first', 'last') >>> login3(first='John', last='Doe') 'JDoe' """ def __init__(self, callback, *keys): """ :param callback: The callable to call when all keys are present. :param keys: Optional keys used for source values. """ if not callable(callback): raise TypeError( CALLABLE_ERROR % ('callback', callback, type(callback)) ) self.callback = callback if len(keys) == 0: fc = callback.func_code self.keys = fc.co_varnames[:fc.co_argcount] else: self.keys = keys for key in self.keys: if type(key) is not str: raise TypeError( TYPE_ERROR % ('keys', str, key, type(key)) ) lock(self) def __repr__(self): args = (self.callback.__name__,) + tuple(repr(k) for k in self.keys) return '%s(%s)' % ( self.__class__.__name__, ', '.join(args) ) def __call__(self, **kw): """ Call the callback if all keys are present. If all keys are present, the callback is called and its return value is returned. If any keys are missing, ``None`` is returned. :param kw: The keyword arguments. """ vals = tuple(kw.get(k, None) for k in self.keys) if None in vals: return try: return self.callback(*vals) except StandardError: pass def parse_param_spec(spec): """ Parse shorthand ``spec`` into to ``(name, kw)``. The ``spec`` string determines the parameter name, whether the parameter is required, and whether the parameter is multivalue according the following syntax: ====== ===== ======== ========== Spec Name Required Multivalue ====== ===== ======== ========== 'var' 'var' True False 'var?' 'var' False False 'var*' 'var' False True 'var+' 'var' True True ====== ===== ======== ========== For example, >>> parse_param_spec('login') ('login', {'required': True, 'multivalue': False}) >>> parse_param_spec('gecos?') ('gecos', {'required': False, 'multivalue': False}) >>> parse_param_spec('telephone_numbers*') ('telephone_numbers', {'required': False, 'multivalue': True}) >>> parse_param_spec('group+') ('group', {'required': True, 'multivalue': True}) :param spec: A spec string. """ if type(spec) is not str: raise TypeError( TYPE_ERROR % ('spec', str, spec, type(spec)) ) _map = { '?': dict(required=False, multivalue=False), '*': dict(required=False, multivalue=True), '+': dict(required=True, multivalue=True), } end = spec[-1] if end in _map: return (spec[:-1], _map[end]) return (spec, dict(required=True, multivalue=False)) __messages = set() def _(message): __messages.add(message) return message class Param(ReadOnly): """ Base class for all parameters. """ # This is a dummy type so that most of the functionality of Param can be # unit tested directly without always creating a subclass; however, a real # (direct) subclass must *always* override this class attribute: type = NoneType # Ouch, this wont be very useful in the real world! # Subclasses should override this with something more specific: type_error = _('incorrect type') # _convert_scalar operates only on scalar values scalar_error = _('Only one value is allowed') kwargs = ( ('cli_name', str, None), ('cli_short_name', str, None), ('label', (basestring, Gettext), None), ('doc', (basestring, Gettext), None), ('required', bool, True), ('multivalue', bool, False), ('primary_key', bool, False), ('normalizer', callable, None), ('default_from', DefaultFrom, None), ('create_default', callable, None), ('autofill', bool, False), ('query', bool, False), ('attribute', bool, False), ('include', frozenset, None), ('exclude', frozenset, None), ('flags', frozenset, frozenset()), ('hint', (str, Gettext), None), ('alwaysask', bool, False), # The 'default' kwarg gets appended in Param.__init__(): # ('default', self.type, None), ) def __init__(self, name, *rules, **kw): # We keep these values to use in __repr__(): self.param_spec = name self.__kw = dict(kw) if isinstance(self, Password): self.password = True else: self.password = False # Merge in kw from parse_param_spec(): (name, kw_from_spec) = parse_param_spec(name) if not 'required' in kw: kw['required'] = kw_from_spec['required'] if not 'multivalue' in kw: kw['multivalue'] = kw_from_spec['multivalue'] self.name = check_name(name) self.nice = '%s(%r)' % (self.__class__.__name__, self.param_spec) # Add 'default' to self.kwargs and makes sure no unknown kw were given: assert type(self.type) is type if kw.get('multivalue', True): self.kwargs += (('default', tuple, None),) else: self.kwargs += (('default', self.type, None),) if not set(t[0] for t in self.kwargs).issuperset(self.__kw): extra = set(kw) - set(t[0] for t in self.kwargs) raise TypeError( '%s: takes no such kwargs: %s' % (self.nice, ', '.join(repr(k) for k in sorted(extra)) ) ) # Merge in default for 'cli_name', label, doc if not given: if kw.get('cli_name') is None: kw['cli_name'] = self.name if kw.get('label') is None: kw['label'] = FixMe(self.name) if kw.get('doc') is None: kw['doc'] = kw['label'] # Wrap 'default_from' in a DefaultFrom if not already: df = kw.get('default_from', None) if callable(df) and not isinstance(df, DefaultFrom): kw['default_from'] = DefaultFrom(df) # We keep this copy with merged values also to use when cloning: self.__clonekw = kw # Perform type validation on kw, add in class rules: class_rules = [] for (key, kind, default) in self.kwargs: value = kw.get(key, default) if value is not None: if kind is frozenset: if type(value) in (list, tuple): value = frozenset(value) elif type(value) is str: value = frozenset([value]) if ( type(kind) is type and not isinstance(value, kind) or type(kind) is tuple and not isinstance(value, kind) ): raise TypeError( TYPE_ERROR % (key, kind, value, type(value)) ) elif kind is callable and not callable(value): raise TypeError( CALLABLE_ERROR % (key, value, type(value)) ) if hasattr(self, key): raise ValueError('kwarg %r conflicts with attribute on %s' % ( key, self.__class__.__name__) ) setattr(self, key, value) rule_name = '_rule_%s' % key if value is not None and hasattr(self, rule_name): class_rules.append(getattr(self, rule_name)) check_name(self.cli_name) # Check that only default_from or create_default was provided: assert not hasattr(self, '_get_default'), self.nice if callable(self.default_from): if callable(self.create_default): raise ValueError( '%s: cannot have both %r and %r' % ( self.nice, 'default_from', 'create_default') ) self._get_default = self.default_from elif callable(self.create_default): self._get_default = self.create_default else: self._get_default = None # Check that only 'include' or 'exclude' was provided: if None not in (self.include, self.exclude): raise ValueError( '%s: cannot have both %s=%r and %s=%r' % ( self.nice, 'include', self.include, 'exclude', self.exclude, ) ) # Check that all the rules are callable self.class_rules = tuple(class_rules) self.rules = rules if self.query: self.all_rules = self.class_rules else: self.all_rules = self.class_rules + self.rules for rule in self.all_rules: if not callable(rule): raise TypeError( '%s: rules must be callable; got %r' % (self.nice, rule) ) # Check that cli_short_name is only 1 character long: if not (self.cli_short_name is None or len(self.cli_short_name) == 1): raise ValueError( '%s: cli_short_name can only be a single character: %s' % ( self.nice, self.cli_short_name) ) # And we're done. lock(self) def __repr__(self): """ Return an expresion that could construct this `Param` instance. """ return '%s(%s)' % ( self.__class__.__name__, ', '.join(self.__repr_iter()) ) def __repr_iter(self): yield repr(self.param_spec) for rule in self.rules: yield rule.__name__ for key in sorted(self.__kw): value = self.__kw[key] if callable(value) and hasattr(value, '__name__'): value = value.__name__ else: value = repr(value) yield '%s=%s' % (key, value) def __call__(self, value, **kw): """ One stop shopping. """ if value in NULLS: value = self.get_default(**kw) else: value = self.convert(self.normalize(value)) if hasattr(self, 'env'): self.validate(value, self.env.context) #pylint: disable=E1101 else: self.validate(value) return value def kw(self): """ Iterate through ``(key,value)`` for all kwargs passed to constructor. """ for key in sorted(self.__kw): value = self.__kw[key] if callable(value) and hasattr(value, '__name__'): value = value.__name__ yield (key, value) def use_in_context(self, env): """ Return ``True`` if this parameter should be used in ``env.context``. If a parameter is created with niether the ``include`` nor the ``exclude`` kwarg, this method will always return ``True``. For example: >>> from ipalib.config import Env >>> param = Param('my_param') >>> param.use_in_context(Env(context='foo')) True >>> param.use_in_context(Env(context='bar')) True If a parameter is created with an ``include`` kwarg, this method will only return ``True`` if ``env.context`` is in ``include``. For example: >>> param = Param('my_param', include=['foo', 'whatever']) >>> param.include frozenset(['foo', 'whatever']) >>> param.use_in_context(Env(context='foo')) True >>> param.use_in_context(Env(context='bar')) False If a paremeter is created with an ``exclude`` kwarg, this method will only return ``True`` if ``env.context`` is not in ``exclude``. For example: >>> param = Param('my_param', exclude=['foo', 'whatever']) >>> param.exclude frozenset(['foo', 'whatever']) >>> param.use_in_context(Env(context='foo')) False >>> param.use_in_context(Env(context='bar')) True Note that the ``include`` and ``exclude`` kwargs are mutually exclusive and that at most one can be suppelied to `Param.__init__()`. For example: >>> param = Param('nope', include=['foo'], exclude=['bar']) Traceback (most recent call last): ... ValueError: Param('nope'): cannot have both include=frozenset(['foo']) and exclude=frozenset(['bar']) So that subclasses can add additional logic based on other environment variables, the entire `config.Env` instance is passed in rather than just the value of ``env.context``. """ if self.include is not None: return (env.context in self.include) if self.exclude is not None: return (env.context not in self.exclude) return True def safe_value(self, value): """ Return a value safe for logging. This is used so that passwords don't get logged. If this is a `Password` instance and ``value`` is not ``None``, a constant ``u'********'`` is returned. For example: >>> p = Password('my_password') >>> p.safe_value(u'This is my password') u'********' >>> p.safe_value(None) is None True If this is not a `Password` instance, ``value`` is returned unchanged. For example: >>> s = Str('my_str') >>> s.safe_value(u'Some arbitrary value') u'Some arbitrary value' """ if self.password and value is not None: return u'********' return value def clone(self, **overrides): """ Return a new `Param` instance similar to this one. """ return self.clone_rename(self.name, **overrides) def clone_rename(self, name, **overrides): """ Return a new `Param` instance similar to this one, but named differently """ return self.clone_retype(name, self.__class__, **overrides) def clone_retype(self, name, klass, **overrides): """ Return a new `Param` instance similar to this one, but of a different type """ kw = dict(self.__clonekw) kw.update(overrides) return klass(name, *self.rules, **kw) def normalize(self, value): """ Normalize ``value`` using normalizer callback. For example: >>> param = Param('telephone', ... normalizer=lambda value: value.replace('.', '-') ... ) >>> param.normalize(u'800.123.4567') u'800-123-4567' If this `Param` instance was created with a normalizer callback and ``value`` is a unicode instance, the normalizer callback is called and *its* return value is returned. On the other hand, if this `Param` instance was *not* created with a normalizer callback, if ``value`` is *not* a unicode instance, or if an exception is caught when calling the normalizer callback, ``value`` is returned unchanged. :param value: A proposed value for this parameter. """ if self.normalizer is None: return value if self.multivalue: if type(value) in (tuple, list): return tuple( self._normalize_scalar(v) for v in value ) return (self._normalize_scalar(value),) # Return a tuple return self._normalize_scalar(value) def _normalize_scalar(self, value): """ Normalize a scalar value. This method is called once for each value in a multivalue. """ if type(value) is not unicode: return value try: return self.normalizer(value) except StandardError: return value def convert(self, value): """ Convert ``value`` to the Python type required by this parameter. For example: >>> scalar = Str('my_scalar') >>> scalar.type >>> scalar.convert(43.2) u'43.2' (Note that `Str` is a subclass of `Param`.) All values in `constants.NULLS` will be converted to ``None``. For example: >>> scalar.convert(u'') is None # An empty string True >>> scalar.convert([]) is None # An empty list True Likewise, values in `constants.NULLS` will be filtered out of a multivalue parameter. For example: >>> multi = Str('my_multi', multivalue=True) >>> multi.convert([1.5, '', 17, None, u'Hello']) (u'1.5', u'17', u'Hello') >>> multi.convert([None, u'']) is None # Filters to an empty list True Lastly, multivalue parameters will always return a ``tuple`` (assuming they don't return ``None`` as in the last example above). For example: >>> multi.convert(42) # Called with a scalar value (u'42',) >>> multi.convert([0, 1]) # Called with a list value (u'0', u'1') Note that how values are converted (and from what types they will be converted) completely depends upon how a subclass implements its `Param._convert_scalar()` method. For example, see `Str._convert_scalar()`. :param value: A proposed value for this parameter. """ if value in NULLS: return if self.multivalue: if type(value) not in (tuple, list): value = (value,) values = tuple( self._convert_scalar(v, i) for (i, v) in filter( lambda iv: iv[1] not in NULLS, enumerate(value) ) ) if len(values) == 0: return return values return self._convert_scalar(value) def _convert_scalar(self, value, index=None): """ Convert a single scalar value. """ if type(value) is self.type: return value raise ConversionError(name=self.name, index=index, error=ugettext(self.type_error), ) def validate(self, value, context=None): """ Check validity of ``value``. :param value: A proposed value for this parameter. :param context: The context we are running in. """ if value is None: if self.required: if context == 'cli': raise RequirementError(name=self.cli_name) else: raise RequirementError(name=self.name) return if self.multivalue: if type(value) is not tuple: raise TypeError( TYPE_ERROR % ('value', tuple, value, type(value)) ) if len(value) < 1: raise ValueError('value: empty tuple must be converted to None') for (i, v) in enumerate(value): self._validate_scalar(v, i) else: self._validate_scalar(value) def _validate_scalar(self, value, index=None): if type(value) is not self.type: raise ValidationError(name=self.name, error='need a %r; got %r (a %r)' % ( self.type, value, type(value) ) ) if index is not None and type(index) is not int: raise TypeError( TYPE_ERROR % ('index', int, index, type(index)) ) for rule in self.all_rules: error = rule(ugettext, value) if error is not None: name = self.cli_name if not name: name = self.name raise ValidationError( name=name, value=value, index=index, error=error, rule=rule, ) def get_default(self, **kw): """ Return the static default or construct and return a dynamic default. (In these examples, we will use the `Str` and `Bytes` classes, which both subclass from `Param`.) The *default* static default is ``None``. For example: >>> s = Str('my_str') >>> s.default is None True >>> s.get_default() is None True However, you can provide your own static default via the ``default`` keyword argument when you create your `Param` instance. For example: >>> s = Str('my_str', default=u'My Static Default') >>> s.default u'My Static Default' >>> s.get_default() u'My Static Default' If you need to generate a dynamic default from other supplied parameter values, provide a callback via the ``default_from`` keyword argument. This callback will be automatically wrapped in a `DefaultFrom` instance if it isn't one already (see the `DefaultFrom` class for all the gory details). For example: >>> login = Str('login', default=u'my-static-login-default', ... default_from=lambda first, last: (first[0] + last).lower(), ... ) >>> isinstance(login.default_from, DefaultFrom) True >>> login.default_from.keys ('first', 'last') Then when all the keys needed by the `DefaultFrom` instance are present, the dynamic default is constructed and returned. For example: >>> kw = dict(last=u'Doe', first=u'John') >>> login.get_default(**kw) u'jdoe' Or if any keys are missing, your *static* default is returned. For example: >>> kw = dict(first=u'John', department=u'Engineering') >>> login.get_default(**kw) u'my-static-login-default' The second, less common way to construct a dynamic default is to provide a callback via the ``create_default`` keyword argument. Unlike a ``default_from`` callback, your ``create_default`` callback will not get wrapped in any dispatcher. Instead, it will be called directly, which means your callback must accept arbitrary keyword arguments, although whether your callback utilises these values is up to your implementation. For example: >>> def make_csr(**kw): ... print ' make_csr(%r)' % (kw,) # Note output below ... return 'Certificate Signing Request' ... >>> csr = Bytes('csr', create_default=make_csr) Your ``create_default`` callback will be called with whatever keyword arguments are passed to `Param.get_default()`. For example: >>> kw = dict(arbitrary='Keyword', arguments='Here') >>> csr.get_default(**kw) make_csr({'arguments': 'Here', 'arbitrary': 'Keyword'}) 'Certificate Signing Request' And your ``create_default`` callback is called even if `Param.get_default()` is called with *zero* keyword arguments. For example: >>> csr.get_default() make_csr({}) 'Certificate Signing Request' The ``create_default`` callback will most likely be used as a pre-execute hook to perform some special client-side operation. For example, the ``csr`` parameter above might make a call to ``/usr/bin/openssl``. However, often a ``create_default`` callback could also be implemented as a ``default_from`` callback. When this is the case, a ``default_from`` callback should be used as they are more structured and therefore less error-prone. The ``default_from`` and ``create_default`` keyword arguments are mutually exclusive. If you provide both, a ``ValueError`` will be raised. For example: >>> homedir = Str('home', ... default_from=lambda login: '/home/%s' % login, ... create_default=lambda **kw: '/lets/use/this', ... ) Traceback (most recent call last): ... ValueError: Str('home'): cannot have both 'default_from' and 'create_default' """ if self._get_default is not None: default = self._get_default(**kw) if default is not None: try: return self.convert(self.normalize(default)) except StandardError: pass return self.default def __json__(self): json_dict = {} for (a, k, d) in self.kwargs: if k in (callable, DefaultFrom): continue elif isinstance(getattr(self, a), frozenset): json_dict[a] = [k for k in getattr(self, a, [])] else: json_dict[a] = getattr(self, a, '') json_dict['class'] = self.__class__.__name__ json_dict['name'] = self.name json_dict['type'] = self.type.__name__ return json_dict class Bool(Param): """ A parameter for boolean values (stored in the ``bool`` type). """ type = bool type_error = _('must be True or False') # FIXME: This my quick hack to get some UI stuff working, change these defaults # --jderose 2009-08-28 kwargs = Param.kwargs + ( ('truths', frozenset, frozenset([1, u'1', True, u'true', u'TRUE'])), ('falsehoods', frozenset, frozenset([0, u'0', False, u'false', u'FALSE'])), ) def _convert_scalar(self, value, index=None): """ Convert a single scalar value. """ if type(value) is self.type: return value if isinstance(value, basestring): value = value.lower() if value in self.truths: return True if value in self.falsehoods: return False if type(value) in (tuple, list): raise ConversionError(name=self.name, index=index, error=ugettext(self.scalar_error)) raise ConversionError(name=self.name, index=index, error=ugettext(self.type_error), ) class Flag(Bool): """ A boolean parameter that always gets filled in with a default value. This `Bool` subclass forces ``autofill=True`` in `Flag.__init__()`. If no default is provided, it also fills in a default value of ``False``. Lastly, unlike the `Bool` class, the default must be either ``True`` or ``False`` and cannot be ``None``. For example: >>> flag = Flag('my_flag') >>> (flag.autofill, flag.default) (True, False) To have a default value of ``True``, create your `Flag` intance with ``default=True``. For example: >>> flag = Flag('my_flag', default=True) >>> (flag.autofill, flag.default) (True, True) Also note that creating a `Flag` instance with ``autofill=False`` will have no effect. For example: >>> flag = Flag('my_flag', autofill=False) >>> flag.autofill True """ def __init__(self, name, *rules, **kw): kw['autofill'] = True if 'default' not in kw: kw['default'] = False if type(kw['default']) is not bool: default = kw['default'] raise TypeError( TYPE_ERROR % ('default', bool, default, type(default)) ) super(Flag, self).__init__(name, *rules, **kw) class Number(Param): """ Base class for the `Int` and `Float` parameters. """ def _convert_scalar(self, value, index=None): """ Convert a single scalar value. """ if type(value) is self.type: return value if type(value) in (unicode, int, float): try: return self.type(value) except ValueError: pass if type(value) in (tuple, list): raise ConversionError(name=self.name, index=index, error=ugettext(self.scalar_error)) raise ConversionError(name=self.name, index=index, error=ugettext(self.type_error), ) class Int(Number): """ A parameter for integer values (stored in the ``int`` type). """ type = int type_error = _('must be an integer') kwargs = Param.kwargs + ( ('minvalue', int, int(MININT)), ('maxvalue', int, int(MAXINT)), ) def __init__(self, name, *rules, **kw): #pylint: disable=E1003 super(Number, self).__init__(name, *rules, **kw) if (self.minvalue > self.maxvalue) and (self.minvalue is not None and self.maxvalue is not None): raise ValueError( '%s: minvalue > maxvalue (minvalue=%r, maxvalue=%r)' % ( self.nice, self.minvalue, self.maxvalue) ) def _convert_scalar(self, value, index=None): """ Convert a single scalar value. """ if type(value) in (int, long): return value if type(value) is unicode: # permit floating point strings if value.find(u'.') >= 0: try: return int(float(value)) except ValueError: pass else: try: # 2nd arg is radix base, 2nd arg only accepted for strings. # Zero means determine radix base from prefix (e.g. 0x for hex) return int(value, 0) except ValueError: pass if type(value) is float: try: return int(value) except ValueError: pass raise ConversionError(name=self.name, index=index, error=ugettext(self.type_error), ) def _rule_minvalue(self, _, value): """ Check min constraint. """ assert type(value) in (int, long) if value < self.minvalue or value < MININT: return _('must be at least %(minvalue)d') % dict( minvalue=self.minvalue, ) def _rule_maxvalue(self, _, value): """ Check max constraint. """ assert type(value) in (int, long) if value > self.maxvalue or value > MAXINT: return _('can be at most %(maxvalue)d') % dict( maxvalue=self.maxvalue, ) def _validate_scalar(self, value, index=None): """ This duplicates _validate_scalar in the Param class with the exception that it allows both int and long types. The min/max rules handle size enforcement. """ if type(value) not in (int, long): raise ValidationError(name=self.name, error='need a %r; got %r (a %r)' % ( self.type, value, type(value) ) ) if index is not None and type(index) is not int: raise TypeError( TYPE_ERROR % ('index', int, index, type(index)) ) for rule in self.all_rules: error = rule(ugettext, value) if error is not None: name = self.cli_name if not name: name = self.name raise ValidationError( name=name, value=value, index=index, error=error, rule=rule, ) class Float(Number): """ A parameter for floating-point values (stored in the ``float`` type). """ type = float type_error = _('must be a decimal number') kwargs = Param.kwargs + ( ('minvalue', float, None), ('maxvalue', float, None), ) def __init__(self, name, *rules, **kw): #pylint: disable=E1003 super(Number, self).__init__(name, *rules, **kw) if (self.minvalue > self.maxvalue) and (self.minvalue is not None and self.maxvalue is not None): raise ValueError( '%s: minvalue > maxvalue (minvalue=%r, maxvalue=%r)' % ( self.nice, self.minvalue, self.maxvalue) ) def _rule_minvalue(self, _, value): """ Check min constraint. """ assert type(value) is float if value < self.minvalue: return _('must be at least %(minvalue)f') % dict( minvalue=self.minvalue, ) def _rule_maxvalue(self, _, value): """ Check max constraint. """ assert type(value) is float if value > self.maxvalue: return _('can be at most %(maxvalue)f') % dict( maxvalue=self.maxvalue, ) class Data(Param): """ Base class for the `Bytes` and `Str` parameters. Previously `Str` was as subclass of `Bytes`. Now the common functionality has been split into this base class so that ``isinstance(foo, Bytes)`` wont be ``True`` when ``foo`` is actually an `Str` instance (which is confusing). """ kwargs = Param.kwargs + ( ('minlength', int, None), ('maxlength', int, None), ('length', int, None), ('pattern', (basestring,), None), ('pattern_errmsg', (basestring,), None), ) re = None re_errmsg = None def __init__(self, name, *rules, **kw): super(Data, self).__init__(name, *rules, **kw) if not ( self.length is None or (self.minlength is None and self.maxlength is None) ): raise ValueError( '%s: cannot mix length with minlength or maxlength' % self.nice ) if self.minlength is not None and self.minlength < 1: raise ValueError( '%s: minlength must be >= 1; got %r' % (self.nice, self.minlength) ) if self.maxlength is not None and self.maxlength < 1: raise ValueError( '%s: maxlength must be >= 1; got %r' % (self.nice, self.maxlength) ) if None not in (self.minlength, self.maxlength): if self.minlength > self.maxlength: raise ValueError( '%s: minlength > maxlength (minlength=%r, maxlength=%r)' % ( self.nice, self.minlength, self.maxlength) ) elif self.minlength == self.maxlength: raise ValueError( '%s: minlength == maxlength; use length=%d instead' % ( self.nice, self.minlength) ) def _rule_pattern(self, _, value): """ Check pattern (regex) contraint. """ assert type(value) is self.type if self.re.match(value) is None: if self.re_errmsg: return self.re_errmsg % dict(pattern=self.pattern,) else: return _('must match pattern "%(pattern)s"') % dict( pattern=self.pattern, ) class Bytes(Data): """ A parameter for binary data (stored in the ``str`` type). This class is named *Bytes* instead of *Str* so it's aligned with the Python v3 ``(str, unicode) => (bytes, str)`` clean-up. See: http://docs.python.org/3.0/whatsnew/3.0.html Also see the `Str` parameter. """ type = str type_error = _('must be binary data') def __init__(self, name, *rules, **kw): if kw.get('pattern', None) is None: self.re = None else: self.re = re.compile(kw['pattern']) self.re_errmsg = kw.get('pattern_errmsg', None) super(Bytes, self).__init__(name, *rules, **kw) def _rule_minlength(self, _, value): """ Check minlength constraint. """ assert type(value) is str if len(value) < self.minlength: return _('must be at least %(minlength)d bytes') % dict( minlength=self.minlength, ) def _rule_maxlength(self, _, value): """ Check maxlength constraint. """ assert type(value) is str if len(value) > self.maxlength: return _('can be at most %(maxlength)d bytes') % dict( maxlength=self.maxlength, ) def _rule_length(self, _, value): """ Check length constraint. """ assert type(value) is str if len(value) != self.length: return _('must be exactly %(length)d bytes') % dict( length=self.length, ) class Str(Data): """ A parameter for Unicode text (stored in the ``unicode`` type). This class is named *Str* instead of *Unicode* so it's aligned with the Python v3 ``(str, unicode) => (bytes, str)`` clean-up. See: http://docs.python.org/3.0/whatsnew/3.0.html Also see the `Bytes` parameter. """ kwargs = Data.kwargs + ( ('noextrawhitespace', bool, True), ) type = unicode type_error = _('must be Unicode text') def __init__(self, name, *rules, **kw): if kw.get('pattern', None) is None: self.re = None else: self.re = re.compile(kw['pattern'], re.UNICODE) self.re_errmsg = kw.get('pattern_errmsg', None) super(Str, self).__init__(name, *rules, **kw) def _convert_scalar(self, value, index=None): """ Convert a single scalar value. """ if type(value) is self.type: return value if type(value) in (int, float): return self.type(value) if type(value) in (tuple, list): raise ConversionError(name=self.name, index=index, error=ugettext(self.scalar_error)) raise ConversionError(name=self.name, index=index, error=ugettext(self.type_error), ) def _rule_noextrawhitespace(self, _, value): """ Do not allow leading/trailing spaces. """ assert type(value) is unicode if self.noextrawhitespace is False: #pylint: disable=E1101 return if len(value) != len(value.strip()): return _('Leading and trailing spaces are not allowed') def _rule_minlength(self, _, value): """ Check minlength constraint. """ assert type(value) is unicode if len(value) < self.minlength: return _('must be at least %(minlength)d characters') % dict( minlength=self.minlength, ) def _rule_maxlength(self, _, value): """ Check maxlength constraint. """ assert type(value) is unicode if len(value) > self.maxlength: return _('can be at most %(maxlength)d characters') % dict( maxlength=self.maxlength, ) def _rule_length(self, _, value): """ Check length constraint. """ assert type(value) is unicode if len(value) != self.length: return _('must be exactly %(length)d characters') % dict( length=self.length, ) class IA5Str(Str): """ An IA5String per RFC 4517 """ def __init__(self, name, *rules, **kw): super(IA5Str, self).__init__(name, *rules, **kw) def _convert_scalar(self, value, index=None): if isinstance(value, basestring): for i in xrange(len(value)): if ord(value[i]) > 127: raise ConversionError(name=self.name, index=index, error=_('The character \'%(char)r\' is not allowed.') % dict(char=value[i],) ) return super(IA5Str, self)._convert_scalar(value, index) class Password(Str): """ A parameter for passwords (stored in the ``unicode`` type). """ kwargs = Str.kwargs + ( ('confirm', bool, True), ) def _convert_scalar(self, value, index=None): if isinstance(value, (tuple, list)) and len(value) == 2: (p1, p2) = value if p1 != p2: raise PasswordMismatch(name=self.name, index=index) value = p1 return super(Password, self)._convert_scalar(value, index) class Enum(Param): """ Base class for parameters with enumerable values. """ kwargs = Param.kwargs + ( ('values', tuple, tuple()), ) def __init__(self, name, *rules, **kw): super(Enum, self).__init__(name, *rules, **kw) for (i, v) in enumerate(self.values): if type(v) is not self.type: n = '%s values[%d]' % (self.nice, i) raise TypeError( TYPE_ERROR % (n, self.type, v, type(v)) ) def _rule_values(self, _, value, **kw): if value not in self.values: return _('must be one of %(values)r') % dict( values=self.values, ) class BytesEnum(Enum): """ Enumerable for binary data (stored in the ``str`` type). """ type = unicode class StrEnum(Enum): """ Enumerable for Unicode text (stored in the ``unicode`` type). For example: >>> enum = StrEnum('my_enum', values=(u'One', u'Two', u'Three')) >>> enum.validate(u'Two', 'cli') is None True >>> enum.validate(u'Four', 'cli') Traceback (most recent call last): ... ValidationError: invalid 'my_enum': must be one of (u'One', u'Two', u'Three') """ type = unicode class List(Param): """ Base class for parameters as a list of values. The input is a delimited string. """ type = tuple kwargs = Param.kwargs + ( ('separator', str, ','), ('skipspace', bool, True), ) # The following 2 functions were taken from the Python # documentation at http://docs.python.org/library/csv.html def __utf_8_encoder(self, unicode_csv_data): for line in unicode_csv_data: yield line.encode('utf-8') def __unicode_csv_reader(self, unicode_csv_data, dialect=csv.excel, **kwargs): # csv.py doesn't do Unicode; encode temporarily as UTF-8: csv_reader = csv.reader(self.__utf_8_encoder(unicode_csv_data), dialect=dialect, delimiter=self.separator, escapechar='\\', skipinitialspace=self.skipspace, **kwargs) for row in csv_reader: # decode UTF-8 back to Unicode, cell by cell: yield [unicode(cell, 'utf-8') for cell in row] def __init__(self, name, *rules, **kw): kw['multivalue'] = True super(List, self).__init__(name, *rules, **kw) def normalize(self, value): if value and not type(value) in (list, tuple): reader = self.__unicode_csv_reader([value]) value = [] for row in reader: value = value + row value = tuple(value) return super(List, self).normalize(value) def _convert_scalar(self, value, index=None): return value def _validate_scalar(self, value, index=None): for rule in self.all_rules: error = rule(ugettext, value) if error is not None: raise ValidationError( name=self.name, value=value, index=index, error=error, rule=rule, ) class File(Str): """ File parameter type. Accepts file names and loads their content into the parameter value. """ kwargs = Data.kwargs + ( # valid for CLI, other backends (e.g. webUI) can ignore this ('stdin_if_missing', bool, False), ('noextrawhitespace', bool, False), ) class AccessTime(Str): """ Access time parameter type. Accepts values conforming to generalizedTime as defined in RFC 4517 section 3.3.13 without time zone information. """ def _check_HHMM(self, t): if len(t) != 4: raise ValueError('HHMM must be exactly 4 characters long') if not t.isnumeric(): raise ValueError('HHMM non-numeric') hh = int(t[0:2]) if hh < 0 or hh > 23: raise ValueError('HH out of range') mm = int(t[2:4]) if mm < 0 or mm > 59: raise ValueError('MM out of range') def _check_dotw(self, t): if t.isnumeric(): value = int(t) if value < 1 or value > 7: raise ValueError('day of the week out of range') elif t not in ('Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'): raise ValueError('invalid day of the week') def _check_dotm(self, t, month_num=1, year=4): if not t.isnumeric(): raise ValueError('day of the month non-numeric') value = int(t) if month_num in (1, 3, 5, 7, 8, 10, 12): if value < 1 or value > 31: raise ValueError('day of the month out of range') elif month_num in (4, 6, 9, 11): if value < 1 or value > 30: raise ValueError('day of the month out of range') elif month_num == 2: if year % 4 == 0 and (year % 100 != 0 or year % 400 == 0): if value < 1 or value > 29: raise ValueError('day of the month out of range') else: if value < 1 or value > 28: raise ValueError('day of the month out of range') def _check_wotm(self, t): if not t.isnumeric(): raise ValueError('week of the month non-numeric') value = int(t) if value < 1 or value > 6: raise ValueError('week of the month out of range') def _check_woty(self, t): if not t.isnumeric(): raise ValueError('week of the year non-numeric') value = int(t) if value < 1 or value > 52: raise ValueError('week of the year out of range') def _check_doty(self, t): if not t.isnumeric(): raise ValueError('day of the year non-numeric') value = int(t) if value < 1 or value > 365: raise ValueError('day of the year out of range') def _check_month_num(self, t): if not t.isnumeric(): raise ValueError('month number non-numeric') value = int(t) if value < 1 or value > 12: raise ValueError('month number out of range') def _check_interval(self, t, check_func): intervals = t.split(',') for i in intervals: if not i: raise ValueError('invalid time range') values = i.split('-') if len(values) > 2: raise ValueError('invalid time range') for v in values: check_func(v) if len(values) == 2: if int(values[0]) > int(values[1]): raise ValueError('invalid time range') def _check_W_spec(self, ts, index): if ts[index] != 'day': raise ValueError('invalid week specifier') index += 1 self._check_interval(ts[index], self._check_dotw) return index def _check_M_spec(self, ts, index): if ts[index] == 'week': self._check_interval(ts[index + 1], self._check_wotm) index = self._check_W_spec(ts, index + 2) elif ts[index] == 'day': index += 1 self._check_interval(ts[index], self._check_dotm) else: raise ValueError('invalid month specifier') return index def _check_Y_spec(self, ts, index): if ts[index] == 'month': index += 1 self._check_interval(ts[index], self._check_month_num) month_num = int(ts[index]) index = self._check_M_spec(ts, index + 1) elif ts[index] == 'week': self._check_interval(ts[index + 1], self._check_woty) index = self._check_W_spec(ts, index + 2) elif ts[index] == 'day': index += 1 self._check_interval(ts[index], self._check_doty) else: raise ValueError('invalid year specifier') return index def _check_generalized(self, t): assert type(t) is unicode if len(t) not in (10, 12, 14): raise ValueError('incomplete generalized time') if not t.isnumeric(): raise ValueError('time non-numeric') # don't check year value, with time travel and all :) self._check_month_num(t[4:6]) year_num = int(t[0:4]) month_num = int(t[4:6]) self._check_dotm(t[6:8], month_num, year_num) if len(t) >= 12: self._check_HHMM(t[8:12]) else: self._check_HHMM('%s00' % t[8:10]) if len(t) == 14: s = int(t[12:14]) if s < 0 or s > 60: raise ValueError('seconds out of range') def _check(self, time): ts = time.split() if ts[0] == 'absolute': if len(ts) != 4: raise ValueError('invalid format, must be \'absolute generalizedTime ~ generalizedTime\'') self._check_generalized(ts[1]) if ts[2] != '~': raise ValueError('invalid time range separator') self._check_generalized(ts[3]) if int(ts[1]) >= int(ts[3]): raise ValueError('invalid time range') elif ts[0] == 'periodic': index = None if ts[1] == 'yearly': index = self._check_Y_spec(ts, 2) elif ts[1] == 'monthly': index = self._check_M_spec(ts, 2) elif ts[1] == 'weekly': index = self._check_W_spec(ts, 2) elif ts[1] == 'daily': index = 1 if index is None: raise ValueError('period must be yearly, monthy or daily, got \'%s\'' % ts[1]) self._check_interval(ts[index + 1], self._check_HHMM) else: raise ValueError('time neither absolute or periodic') def _rule_required(self, _, value): try: self._check(value) except ValueError, e: raise ValidationError(name=self.cli_name, error=e.args[0]) except IndexError: raise ValidationError( name=self.cli_name, error='incomplete time value' ) return None def create_param(spec): """ Create an `Str` instance from the shorthand ``spec``. This function allows you to create `Str` parameters (the most common) from a convenient shorthand that defines the parameter name, whether it is required, and whether it is multivalue. (For the definition of the shorthand syntax, see the `parse_param_spec()` function.) If ``spec`` is an ``str`` instance, it will be used to create a new `Str` parameter, which will be returned. For example: >>> s = create_param('hometown?') >>> s Str('hometown?') >>> (s.name, s.required, s.multivalue) ('hometown', False, False) On the other hand, if ``spec`` is already a `Param` instance, it is returned unchanged. For example: >>> b = Bytes('cert') >>> create_param(b) is b True As a plugin author, you will not call this function directly (which would be no more convenient than simply creating the `Str` instance). Instead, `frontend.Command` will call it for you when it evaluates the ``takes_args`` and ``takes_options`` attributes, and `frontend.Object` will call it for you when it evaluates the ``takes_params`` attribute. :param spec: A spec string or a `Param` instance. """ if isinstance(spec, Param): return spec if type(spec) is not str: raise TypeError( TYPE_ERROR % ('spec', (str, Param), spec, type(spec)) ) return Str(spec)