summaryrefslogtreecommitdiffstats
path: root/Documentation/powerpc
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/powerpc')
-rw-r--r--Documentation/powerpc/00-INDEX23
-rw-r--r--Documentation/powerpc/bootwrapper.txt141
-rw-r--r--Documentation/powerpc/cpu_features.txt56
-rw-r--r--Documentation/powerpc/eeh-pci-error-recovery.txt334
-rw-r--r--Documentation/powerpc/firmware-assisted-dump.txt270
-rw-r--r--Documentation/powerpc/hvcs.txt567
-rw-r--r--Documentation/powerpc/kvm_440.txt41
-rw-r--r--Documentation/powerpc/mpc52xx.txt39
-rw-r--r--Documentation/powerpc/ptrace.txt134
-rw-r--r--Documentation/powerpc/qe_firmware.txt295
-rw-r--r--Documentation/powerpc/sound.txt81
-rw-r--r--Documentation/powerpc/zImage_layout.txt47
12 files changed, 0 insertions, 2028 deletions
diff --git a/Documentation/powerpc/00-INDEX b/Documentation/powerpc/00-INDEX
deleted file mode 100644
index 5620fb5ac42..00000000000
--- a/Documentation/powerpc/00-INDEX
+++ /dev/null
@@ -1,23 +0,0 @@
-Index of files in Documentation/powerpc. If you think something about
-Linux/PPC needs an entry here, needs correction or you've written one
-please mail me.
- Cort Dougan (cort@fsmlabs.com)
-
-00-INDEX
- - this file
-cpu_features.txt
- - info on how we support a variety of CPUs with minimal compile-time
- options.
-eeh-pci-error-recovery.txt
- - info on PCI Bus EEH Error Recovery
-hvcs.txt
- - IBM "Hypervisor Virtual Console Server" Installation Guide
-mpc52xx.txt
- - Linux 2.6.x on MPC52xx family
-sound.txt
- - info on sound support under Linux/PPC
-zImage_layout.txt
- - info on the kernel images for Linux/PPC
-qe_firmware.txt
- - describes the layout of firmware binaries for the Freescale QUICC
- Engine and the code that parses and uploads the microcode therein.
diff --git a/Documentation/powerpc/bootwrapper.txt b/Documentation/powerpc/bootwrapper.txt
deleted file mode 100644
index d60fced5e1c..00000000000
--- a/Documentation/powerpc/bootwrapper.txt
+++ /dev/null
@@ -1,141 +0,0 @@
-The PowerPC boot wrapper
-------------------------
-Copyright (C) Secret Lab Technologies Ltd.
-
-PowerPC image targets compresses and wraps the kernel image (vmlinux) with
-a boot wrapper to make it usable by the system firmware. There is no
-standard PowerPC firmware interface, so the boot wrapper is designed to
-be adaptable for each kind of image that needs to be built.
-
-The boot wrapper can be found in the arch/powerpc/boot/ directory. The
-Makefile in that directory has targets for all the available image types.
-The different image types are used to support all of the various firmware
-interfaces found on PowerPC platforms. OpenFirmware is the most commonly
-used firmware type on general purpose PowerPC systems from Apple, IBM and
-others. U-Boot is typically found on embedded PowerPC hardware, but there
-are a handful of other firmware implementations which are also popular. Each
-firmware interface requires a different image format.
-
-The boot wrapper is built from the makefile in arch/powerpc/boot/Makefile and
-it uses the wrapper script (arch/powerpc/boot/wrapper) to generate target
-image. The details of the build system is discussed in the next section.
-Currently, the following image format targets exist:
-
- cuImage.%: Backwards compatible uImage for older version of
- U-Boot (for versions that don't understand the device
- tree). This image embeds a device tree blob inside
- the image. The boot wrapper, kernel and device tree
- are all embedded inside the U-Boot uImage file format
- with boot wrapper code that extracts data from the old
- bd_info structure and loads the data into the device
- tree before jumping into the kernel.
- Because of the series of #ifdefs found in the
- bd_info structure used in the old U-Boot interfaces,
- cuImages are platform specific. Each specific
- U-Boot platform has a different platform init file
- which populates the embedded device tree with data
- from the platform specific bd_info file. The platform
- specific cuImage platform init code can be found in
- arch/powerpc/boot/cuboot.*.c. Selection of the correct
- cuImage init code for a specific board can be found in
- the wrapper structure.
- dtbImage.%: Similar to zImage, except device tree blob is embedded
- inside the image instead of provided by firmware. The
- output image file can be either an elf file or a flat
- binary depending on the platform.
- dtbImages are used on systems which do not have an
- interface for passing a device tree directly.
- dtbImages are similar to simpleImages except that
- dtbImages have platform specific code for extracting
- data from the board firmware, but simpleImages do not
- talk to the firmware at all.
- PlayStation 3 support uses dtbImage. So do Embedded
- Planet boards using the PlanetCore firmware. Board
- specific initialization code is typically found in a
- file named arch/powerpc/boot/<platform>.c; but this
- can be overridden by the wrapper script.
- simpleImage.%: Firmware independent compressed image that does not
- depend on any particular firmware interface and embeds
- a device tree blob. This image is a flat binary that
- can be loaded to any location in RAM and jumped to.
- Firmware cannot pass any configuration data to the
- kernel with this image type and it depends entirely on
- the embedded device tree for all information.
- The simpleImage is useful for booting systems with
- an unknown firmware interface or for booting from
- a debugger when no firmware is present (such as on
- the Xilinx Virtex platform). The only assumption that
- simpleImage makes is that RAM is correctly initialized
- and that the MMU is either off or has RAM mapped to
- base address 0.
- simpleImage also supports inserting special platform
- specific initialization code to the start of the bootup
- sequence. The virtex405 platform uses this feature to
- ensure that the cache is invalidated before caching
- is enabled. Platform specific initialization code is
- added as part of the wrapper script and is keyed on
- the image target name. For example, all
- simpleImage.virtex405-* targets will add the
- virtex405-head.S initialization code (This also means
- that the dts file for virtex405 targets should be
- named (virtex405-<board>.dts). Search the wrapper
- script for 'virtex405' and see the file
- arch/powerpc/boot/virtex405-head.S for details.
- treeImage.%; Image format for used with OpenBIOS firmware found
- on some ppc4xx hardware. This image embeds a device
- tree blob inside the image.
- uImage: Native image format used by U-Boot. The uImage target
- does not add any boot code. It just wraps a compressed
- vmlinux in the uImage data structure. This image
- requires a version of U-Boot that is able to pass
- a device tree to the kernel at boot. If using an older
- version of U-Boot, then you need to use a cuImage
- instead.
- zImage.%: Image format which does not embed a device tree.
- Used by OpenFirmware and other firmware interfaces
- which are able to supply a device tree. This image
- expects firmware to provide the device tree at boot.
- Typically, if you have general purpose PowerPC
- hardware then you want this image format.
-
-Image types which embed a device tree blob (simpleImage, dtbImage, treeImage,
-and cuImage) all generate the device tree blob from a file in the
-arch/powerpc/boot/dts/ directory. The Makefile selects the correct device
-tree source based on the name of the target. Therefore, if the kernel is
-built with 'make treeImage.walnut simpleImage.virtex405-ml403', then the
-build system will use arch/powerpc/boot/dts/walnut.dts to build
-treeImage.walnut and arch/powerpc/boot/dts/virtex405-ml403.dts to build
-the simpleImage.virtex405-ml403.
-
-Two special targets called 'zImage' and 'zImage.initrd' also exist. These
-targets build all the default images as selected by the kernel configuration.
-Default images are selected by the boot wrapper Makefile
-(arch/powerpc/boot/Makefile) by adding targets to the $image-y variable. Look
-at the Makefile to see which default image targets are available.
-
-How it is built
----------------
-arch/powerpc is designed to support multiplatform kernels, which means
-that a single vmlinux image can be booted on many different target boards.
-It also means that the boot wrapper must be able to wrap for many kinds of
-images on a single build. The design decision was made to not use any
-conditional compilation code (#ifdef, etc) in the boot wrapper source code.
-All of the boot wrapper pieces are buildable at any time regardless of the
-kernel configuration. Building all the wrapper bits on every kernel build
-also ensures that obscure parts of the wrapper are at the very least compile
-tested in a large variety of environments.
-
-The wrapper is adapted for different image types at link time by linking in
-just the wrapper bits that are appropriate for the image type. The 'wrapper
-script' (found in arch/powerpc/boot/wrapper) is called by the Makefile and
-is responsible for selecting the correct wrapper bits for the image type.
-The arguments are well documented in the script's comment block, so they
-are not repeated here. However, it is worth mentioning that the script
-uses the -p (platform) argument as the main method of deciding which wrapper
-bits to compile in. Look for the large 'case "$platform" in' block in the
-middle of the script. This is also the place where platform specific fixups
-can be selected by changing the link order.
-
-In particular, care should be taken when working with cuImages. cuImage
-wrapper bits are very board specific and care should be taken to make sure
-the target you are trying to build is supported by the wrapper bits.
diff --git a/Documentation/powerpc/cpu_features.txt b/Documentation/powerpc/cpu_features.txt
deleted file mode 100644
index ffa4183fdb8..00000000000
--- a/Documentation/powerpc/cpu_features.txt
+++ /dev/null
@@ -1,56 +0,0 @@
-Hollis Blanchard <hollis@austin.ibm.com>
-5 Jun 2002
-
-This document describes the system (including self-modifying code) used in the
-PPC Linux kernel to support a variety of PowerPC CPUs without requiring
-compile-time selection.
-
-Early in the boot process the ppc32 kernel detects the current CPU type and
-chooses a set of features accordingly. Some examples include Altivec support,
-split instruction and data caches, and if the CPU supports the DOZE and NAP
-sleep modes.
-
-Detection of the feature set is simple. A list of processors can be found in
-arch/ppc/kernel/cputable.c. The PVR register is masked and compared with each
-value in the list. If a match is found, the cpu_features of cur_cpu_spec is
-assigned to the feature bitmask for this processor and a __setup_cpu function
-is called.
-
-C code may test 'cur_cpu_spec[smp_processor_id()]->cpu_features' for a
-particular feature bit. This is done in quite a few places, for example
-in ppc_setup_l2cr().
-
-Implementing cpufeatures in assembly is a little more involved. There are
-several paths that are performance-critical and would suffer if an array
-index, structure dereference, and conditional branch were added. To avoid the
-performance penalty but still allow for runtime (rather than compile-time) CPU
-selection, unused code is replaced by 'nop' instructions. This nop'ing is
-based on CPU 0's capabilities, so a multi-processor system with non-identical
-processors will not work (but such a system would likely have other problems
-anyways).
-
-After detecting the processor type, the kernel patches out sections of code
-that shouldn't be used by writing nop's over it. Using cpufeatures requires
-just 2 macros (found in arch/powerpc/include/asm/cputable.h), as seen in head.S
-transfer_to_handler:
-
- #ifdef CONFIG_ALTIVEC
- BEGIN_FTR_SECTION
- mfspr r22,SPRN_VRSAVE /* if G4, save vrsave register value */
- stw r22,THREAD_VRSAVE(r23)
- END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
- #endif /* CONFIG_ALTIVEC */
-
-If CPU 0 supports Altivec, the code is left untouched. If it doesn't, both
-instructions are replaced with nop's.
-
-The END_FTR_SECTION macro has two simpler variations: END_FTR_SECTION_IFSET
-and END_FTR_SECTION_IFCLR. These simply test if a flag is set (in
-cur_cpu_spec[0]->cpu_features) or is cleared, respectively. These two macros
-should be used in the majority of cases.
-
-The END_FTR_SECTION macros are implemented by storing information about this
-code in the '__ftr_fixup' ELF section. When do_cpu_ftr_fixups
-(arch/ppc/kernel/misc.S) is invoked, it will iterate over the records in
-__ftr_fixup, and if the required feature is not present it will loop writing
-nop's from each BEGIN_FTR_SECTION to END_FTR_SECTION.
diff --git a/Documentation/powerpc/eeh-pci-error-recovery.txt b/Documentation/powerpc/eeh-pci-error-recovery.txt
deleted file mode 100644
index 9d4e33df624..00000000000
--- a/Documentation/powerpc/eeh-pci-error-recovery.txt
+++ /dev/null
@@ -1,334 +0,0 @@
-
-
- PCI Bus EEH Error Recovery
- --------------------------
- Linas Vepstas
- <linas@austin.ibm.com>
- 12 January 2005
-
-
-Overview:
----------
-The IBM POWER-based pSeries and iSeries computers include PCI bus
-controller chips that have extended capabilities for detecting and
-reporting a large variety of PCI bus error conditions. These features
-go under the name of "EEH", for "Extended Error Handling". The EEH
-hardware features allow PCI bus errors to be cleared and a PCI
-card to be "rebooted", without also having to reboot the operating
-system.
-
-This is in contrast to traditional PCI error handling, where the
-PCI chip is wired directly to the CPU, and an error would cause
-a CPU machine-check/check-stop condition, halting the CPU entirely.
-Another "traditional" technique is to ignore such errors, which
-can lead to data corruption, both of user data or of kernel data,
-hung/unresponsive adapters, or system crashes/lockups. Thus,
-the idea behind EEH is that the operating system can become more
-reliable and robust by protecting it from PCI errors, and giving
-the OS the ability to "reboot"/recover individual PCI devices.
-
-Future systems from other vendors, based on the PCI-E specification,
-may contain similar features.
-
-
-Causes of EEH Errors
---------------------
-EEH was originally designed to guard against hardware failure, such
-as PCI cards dying from heat, humidity, dust, vibration and bad
-electrical connections. The vast majority of EEH errors seen in
-"real life" are due to either poorly seated PCI cards, or,
-unfortunately quite commonly, due to device driver bugs, device firmware
-bugs, and sometimes PCI card hardware bugs.
-
-The most common software bug, is one that causes the device to
-attempt to DMA to a location in system memory that has not been
-reserved for DMA access for that card. This is a powerful feature,
-as it prevents what; otherwise, would have been silent memory
-corruption caused by the bad DMA. A number of device driver
-bugs have been found and fixed in this way over the past few
-years. Other possible causes of EEH errors include data or
-address line parity errors (for example, due to poor electrical
-connectivity due to a poorly seated card), and PCI-X split-completion
-errors (due to software, device firmware, or device PCI hardware bugs).
-The vast majority of "true hardware failures" can be cured by
-physically removing and re-seating the PCI card.
-
-
-Detection and Recovery
-----------------------
-In the following discussion, a generic overview of how to detect
-and recover from EEH errors will be presented. This is followed
-by an overview of how the current implementation in the Linux
-kernel does it. The actual implementation is subject to change,
-and some of the finer points are still being debated. These
-may in turn be swayed if or when other architectures implement
-similar functionality.
-
-When a PCI Host Bridge (PHB, the bus controller connecting the
-PCI bus to the system CPU electronics complex) detects a PCI error
-condition, it will "isolate" the affected PCI card. Isolation
-will block all writes (either to the card from the system, or
-from the card to the system), and it will cause all reads to
-return all-ff's (0xff, 0xffff, 0xffffffff for 8/16/32-bit reads).
-This value was chosen because it is the same value you would
-get if the device was physically unplugged from the slot.
-This includes access to PCI memory, I/O space, and PCI config
-space. Interrupts; however, will continued to be delivered.
-
-Detection and recovery are performed with the aid of ppc64
-firmware. The programming interfaces in the Linux kernel
-into the firmware are referred to as RTAS (Run-Time Abstraction
-Services). The Linux kernel does not (should not) access
-the EEH function in the PCI chipsets directly, primarily because
-there are a number of different chipsets out there, each with
-different interfaces and quirks. The firmware provides a
-uniform abstraction layer that will work with all pSeries
-and iSeries hardware (and be forwards-compatible).
-
-If the OS or device driver suspects that a PCI slot has been
-EEH-isolated, there is a firmware call it can make to determine if
-this is the case. If so, then the device driver should put itself
-into a consistent state (given that it won't be able to complete any
-pending work) and start recovery of the card. Recovery normally
-would consist of resetting the PCI device (holding the PCI #RST
-line high for two seconds), followed by setting up the device
-config space (the base address registers (BAR's), latency timer,
-cache line size, interrupt line, and so on). This is followed by a
-reinitialization of the device driver. In a worst-case scenario,
-the power to the card can be toggled, at least on hot-plug-capable
-slots. In principle, layers far above the device driver probably
-do not need to know that the PCI card has been "rebooted" in this
-way; ideally, there should be at most a pause in Ethernet/disk/USB
-I/O while the card is being reset.
-
-If the card cannot be recovered after three or four resets, the
-kernel/device driver should assume the worst-case scenario, that the
-card has died completely, and report this error to the sysadmin.
-In addition, error messages are reported through RTAS and also through
-syslogd (/var/log/messages) to alert the sysadmin of PCI resets.
-The correct way to deal with failed adapters is to use the standard
-PCI hotplug tools to remove and replace the dead card.
-
-
-Current PPC64 Linux EEH Implementation
---------------------------------------
-At this time, a generic EEH recovery mechanism has been implemented,
-so that individual device drivers do not need to be modified to support
-EEH recovery. This generic mechanism piggy-backs on the PCI hotplug
-infrastructure, and percolates events up through the userspace/udev
-infrastructure. Following is a detailed description of how this is
-accomplished.
-
-EEH must be enabled in the PHB's very early during the boot process,
-and if a PCI slot is hot-plugged. The former is performed by
-eeh_init() in arch/powerpc/platforms/pseries/eeh.c, and the later by
-drivers/pci/hotplug/pSeries_pci.c calling in to the eeh.c code.
-EEH must be enabled before a PCI scan of the device can proceed.
-Current Power5 hardware will not work unless EEH is enabled;
-although older Power4 can run with it disabled. Effectively,
-EEH can no longer be turned off. PCI devices *must* be
-registered with the EEH code; the EEH code needs to know about
-the I/O address ranges of the PCI device in order to detect an
-error. Given an arbitrary address, the routine
-pci_get_device_by_addr() will find the pci device associated
-with that address (if any).
-
-The default arch/powerpc/include/asm/io.h macros readb(), inb(), insb(),
-etc. include a check to see if the i/o read returned all-0xff's.
-If so, these make a call to eeh_dn_check_failure(), which in turn
-asks the firmware if the all-ff's value is the sign of a true EEH
-error. If it is not, processing continues as normal. The grand
-total number of these false alarms or "false positives" can be
-seen in /proc/ppc64/eeh (subject to change). Normally, almost
-all of these occur during boot, when the PCI bus is scanned, where
-a large number of 0xff reads are part of the bus scan procedure.
-
-If a frozen slot is detected, code in
-arch/powerpc/platforms/pseries/eeh.c will print a stack trace to
-syslog (/var/log/messages). This stack trace has proven to be very
-useful to device-driver authors for finding out at what point the EEH
-error was detected, as the error itself usually occurs slightly
-beforehand.
-
-Next, it uses the Linux kernel notifier chain/work queue mechanism to
-allow any interested parties to find out about the failure. Device
-drivers, or other parts of the kernel, can use
-eeh_register_notifier(struct notifier_block *) to find out about EEH
-events. The event will include a pointer to the pci device, the
-device node and some state info. Receivers of the event can "do as
-they wish"; the default handler will be described further in this
-section.
-
-To assist in the recovery of the device, eeh.c exports the
-following functions:
-
-rtas_set_slot_reset() -- assert the PCI #RST line for 1/8th of a second
-rtas_configure_bridge() -- ask firmware to configure any PCI bridges
- located topologically under the pci slot.
-eeh_save_bars() and eeh_restore_bars(): save and restore the PCI
- config-space info for a device and any devices under it.
-
-
-A handler for the EEH notifier_block events is implemented in
-drivers/pci/hotplug/pSeries_pci.c, called handle_eeh_events().
-It saves the device BAR's and then calls rpaphp_unconfig_pci_adapter().
-This last call causes the device driver for the card to be stopped,
-which causes uevents to go out to user space. This triggers
-user-space scripts that might issue commands such as "ifdown eth0"
-for ethernet cards, and so on. This handler then sleeps for 5 seconds,
-hoping to give the user-space scripts enough time to complete.
-It then resets the PCI card, reconfigures the device BAR's, and
-any bridges underneath. It then calls rpaphp_enable_pci_slot(),
-which restarts the device driver and triggers more user-space
-events (for example, calling "ifup eth0" for ethernet cards).
-
-
-Device Shutdown and User-Space Events
--------------------------------------
-This section documents what happens when a pci slot is unconfigured,
-focusing on how the device driver gets shut down, and on how the
-events get delivered to user-space scripts.
-
-Following is an example sequence of events that cause a device driver
-close function to be called during the first phase of an EEH reset.
-The following sequence is an example of the pcnet32 device driver.
-
- rpa_php_unconfig_pci_adapter (struct slot *) // in rpaphp_pci.c
- {
- calls
- pci_remove_bus_device (struct pci_dev *) // in /drivers/pci/remove.c
- {
- calls
- pci_destroy_dev (struct pci_dev *)
- {
- calls
- device_unregister (&dev->dev) // in /drivers/base/core.c
- {
- calls
- device_del (struct device *)
- {
- calls
- bus_remove_device() // in /drivers/base/bus.c
- {
- calls
- device_release_driver()
- {
- calls
- struct device_driver->remove() which is just
- pci_device_remove() // in /drivers/pci/pci_driver.c
- {
- calls
- struct pci_driver->remove() which is just
- pcnet32_remove_one() // in /drivers/net/pcnet32.c
- {
- calls
- unregister_netdev() // in /net/core/dev.c
- {
- calls
- dev_close() // in /net/core/dev.c
- {
- calls dev->stop();
- which is just pcnet32_close() // in pcnet32.c
- {
- which does what you wanted
- to stop the device
- }
- }
- }
- which
- frees pcnet32 device driver memory
- }
- }}}}}}
-
-
- in drivers/pci/pci_driver.c,
- struct device_driver->remove() is just pci_device_remove()
- which calls struct pci_driver->remove() which is pcnet32_remove_one()
- which calls unregister_netdev() (in net/core/dev.c)
- which calls dev_close() (in net/core/dev.c)
- which calls dev->stop() which is pcnet32_close()
- which then does the appropriate shutdown.
-
----
-Following is the analogous stack trace for events sent to user-space
-when the pci device is unconfigured.
-
-rpa_php_unconfig_pci_adapter() { // in rpaphp_pci.c
- calls
- pci_remove_bus_device (struct pci_dev *) { // in /drivers/pci/remove.c
- calls
- pci_destroy_dev (struct pci_dev *) {
- calls
- device_unregister (&dev->dev) { // in /drivers/base/core.c
- calls
- device_del(struct device * dev) { // in /drivers/base/core.c
- calls
- kobject_del() { //in /libs/kobject.c
- calls
- kobject_uevent() { // in /libs/kobject.c
- calls
- kset_uevent() { // in /lib/kobject.c
- calls
- kset->uevent_ops->uevent() // which is really just
- a call to
- dev_uevent() { // in /drivers/base/core.c
- calls
- dev->bus->uevent() which is really just a call to
- pci_uevent () { // in drivers/pci/hotplug.c
- which prints device name, etc....
- }
- }
- then kobject_uevent() sends a netlink uevent to userspace
- --> userspace uevent
- (during early boot, nobody listens to netlink events and
- kobject_uevent() executes uevent_helper[], which runs the
- event process /sbin/hotplug)
- }
- }
- kobject_del() then calls sysfs_remove_dir(), which would
- trigger any user-space daemon that was watching /sysfs,
- and notice the delete event.
-
-
-Pro's and Con's of the Current Design
--------------------------------------
-There are several issues with the current EEH software recovery design,
-which may be addressed in future revisions. But first, note that the
-big plus of the current design is that no changes need to be made to
-individual device drivers, so that the current design throws a wide net.
-The biggest negative of the design is that it potentially disturbs
-network daemons and file systems that didn't need to be disturbed.
-
--- A minor complaint is that resetting the network card causes
- user-space back-to-back ifdown/ifup burps that potentially disturb
- network daemons, that didn't need to even know that the pci
- card was being rebooted.
-
--- A more serious concern is that the same reset, for SCSI devices,
- causes havoc to mounted file systems. Scripts cannot post-facto
- unmount a file system without flushing pending buffers, but this
- is impossible, because I/O has already been stopped. Thus,
- ideally, the reset should happen at or below the block layer,
- so that the file systems are not disturbed.
-
- Reiserfs does not tolerate errors returned from the block device.
- Ext3fs seems to be tolerant, retrying reads/writes until it does
- succeed. Both have been only lightly tested in this scenario.
-
- The SCSI-generic subsystem already has built-in code for performing
- SCSI device resets, SCSI bus resets, and SCSI host-bus-adapter
- (HBA) resets. These are cascaded into a chain of attempted
- resets if a SCSI command fails. These are completely hidden
- from the block layer. It would be very natural to add an EEH
- reset into this chain of events.
-
--- If a SCSI error occurs for the root device, all is lost unless
- the sysadmin had the foresight to run /bin, /sbin, /etc, /var
- and so on, out of ramdisk/tmpfs.
-
-
-Conclusions
------------
-There's forward progress ...
-
-
diff --git a/Documentation/powerpc/firmware-assisted-dump.txt b/Documentation/powerpc/firmware-assisted-dump.txt
deleted file mode 100644
index 3007bc98af2..00000000000
--- a/Documentation/powerpc/firmware-assisted-dump.txt
+++ /dev/null
@@ -1,270 +0,0 @@
-
- Firmware-Assisted Dump
- ------------------------
- July 2011
-
-The goal of firmware-assisted dump is to enable the dump of
-a crashed system, and to do so from a fully-reset system, and
-to minimize the total elapsed time until the system is back
-in production use.
-
-- Firmware assisted dump (fadump) infrastructure is intended to replace
- the existing phyp assisted dump.
-- Fadump uses the same firmware interfaces and memory reservation model
- as phyp assisted dump.
-- Unlike phyp dump, fadump exports the memory dump through /proc/vmcore
- in the ELF format in the same way as kdump. This helps us reuse the
- kdump infrastructure for dump capture and filtering.
-- Unlike phyp dump, userspace tool does not need to refer any sysfs
- interface while reading /proc/vmcore.
-- Unlike phyp dump, fadump allows user to release all the memory reserved
- for dump, with a single operation of echo 1 > /sys/kernel/fadump_release_mem.
-- Once enabled through kernel boot parameter, fadump can be
- started/stopped through /sys/kernel/fadump_registered interface (see
- sysfs files section below) and can be easily integrated with kdump
- service start/stop init scripts.
-
-Comparing with kdump or other strategies, firmware-assisted
-dump offers several strong, practical advantages:
-
--- Unlike kdump, the system has been reset, and loaded
- with a fresh copy of the kernel. In particular,
- PCI and I/O devices have been reinitialized and are
- in a clean, consistent state.
--- Once the dump is copied out, the memory that held the dump
- is immediately available to the running kernel. And therefore,
- unlike kdump, fadump doesn't need a 2nd reboot to get back
- the system to the production configuration.
-
-The above can only be accomplished by coordination with,
-and assistance from the Power firmware. The procedure is
-as follows:
-
--- The first kernel registers the sections of memory with the
- Power firmware for dump preservation during OS initialization.
- These registered sections of memory are reserved by the first
- kernel during early boot.
-
--- When a system crashes, the Power firmware will save
- the low memory (boot memory of size larger of 5% of system RAM
- or 256MB) of RAM to the previous registered region. It will
- also save system registers, and hardware PTE's.
-
- NOTE: The term 'boot memory' means size of the low memory chunk
- that is required for a kernel to boot successfully when
- booted with restricted memory. By default, the boot memory
- size will be the larger of 5% of system RAM or 256MB.
- Alternatively, user can also specify boot memory size
- through boot parameter 'fadump_reserve_mem=' which will
- override the default calculated size. Use this option
- if default boot memory size is not sufficient for second
- kernel to boot successfully.
-
--- After the low memory (boot memory) area has been saved, the
- firmware will reset PCI and other hardware state. It will
- *not* clear the RAM. It will then launch the bootloader, as
- normal.
-
--- The freshly booted kernel will notice that there is a new
- node (ibm,dump-kernel) in the device tree, indicating that
- there is crash data available from a previous boot. During
- the early boot OS will reserve rest of the memory above
- boot memory size effectively booting with restricted memory
- size. This will make sure that the second kernel will not
- touch any of the dump memory area.
-
--- User-space tools will read /proc/vmcore to obtain the contents
- of memory, which holds the previous crashed kernel dump in ELF
- format. The userspace tools may copy this info to disk, or
- network, nas, san, iscsi, etc. as desired.
-
--- Once the userspace tool is done saving dump, it will echo
- '1' to /sys/kernel/fadump_release_mem to release the reserved
- memory back to general use, except the memory required for
- next firmware-assisted dump registration.
-
- e.g.
- # echo 1 > /sys/kernel/fadump_release_mem
-
-Please note that the firmware-assisted dump feature
-is only available on Power6 and above systems with recent
-firmware versions.
-
-Implementation details:
-----------------------
-
-During boot, a check is made to see if firmware supports
-this feature on that particular machine. If it does, then
-we check to see if an active dump is waiting for us. If yes
-then everything but boot memory size of RAM is reserved during
-early boot (See Fig. 2). This area is released once we finish
-collecting the dump from user land scripts (e.g. kdump scripts)
-that are run. If there is dump data, then the
-/sys/kernel/fadump_release_mem file is created, and the reserved
-memory is held.
-
-If there is no waiting dump data, then only the memory required
-to hold CPU state, HPTE region, boot memory dump and elfcore
-header, is reserved at the top of memory (see Fig. 1). This area
-is *not* released: this region will be kept permanently reserved,
-so that it can act as a receptacle for a copy of the boot memory
-content in addition to CPU state and HPTE region, in the case a
-crash does occur.
-
- o Memory Reservation during first kernel
-
- Low memory Top of memory
- 0 boot memory size |
- | | |<--Reserved dump area -->|
- V V | Permanent Reservation V
- +-----------+----------/ /----------+---+----+-----------+----+
- | | |CPU|HPTE| DUMP |ELF |
- +-----------+----------/ /----------+---+----+-----------+----+
- | ^
- | |
- \ /
- -------------------------------------------
- Boot memory content gets transferred to
- reserved area by firmware at the time of
- crash
- Fig. 1
-
- o Memory Reservation during second kernel after crash
-
- Low memory Top of memory
- 0 boot memory size |
- | |<------------- Reserved dump area ----------- -->|
- V V V
- +-----------+----------/ /----------+---+----+-----------+----+
- | | |CPU|HPTE| DUMP |ELF |
- +-----------+----------/ /----------+---+----+-----------+----+
- | |
- V V
- Used by second /proc/vmcore
- kernel to boot
- Fig. 2
-
-Currently the dump will be copied from /proc/vmcore to a
-a new file upon user intervention. The dump data available through
-/proc/vmcore will be in ELF format. Hence the existing kdump
-infrastructure (kdump scripts) to save the dump works fine with
-minor modifications.
-
-The tools to examine the dump will be same as the ones
-used for kdump.
-
-How to enable firmware-assisted dump (fadump):
--------------------------------------
-
-1. Set config option CONFIG_FA_DUMP=y and build kernel.
-2. Boot into linux kernel with 'fadump=on' kernel cmdline option.
-3. Optionally, user can also set 'fadump_reserve_mem=' kernel cmdline
- to specify size of the memory to reserve for boot memory dump
- preservation.
-
-NOTE: If firmware-assisted dump fails to reserve memory then it will
- fallback to existing kdump mechanism if 'crashkernel=' option
- is set at kernel cmdline.
-
-Sysfs/debugfs files:
-------------
-
-Firmware-assisted dump feature uses sysfs file system to hold
-the control files and debugfs file to display memory reserved region.
-
-Here is the list of files under kernel sysfs:
-
- /sys/kernel/fadump_enabled
-
- This is used to display the fadump status.
- 0 = fadump is disabled
- 1 = fadump is enabled
-
- This interface can be used by kdump init scripts to identify if
- fadump is enabled in the kernel and act accordingly.
-
- /sys/kernel/fadump_registered
-
- This is used to display the fadump registration status as well
- as to control (start/stop) the fadump registration.
- 0 = fadump is not registered.
- 1 = fadump is registered and ready to handle system crash.
-
- To register fadump echo 1 > /sys/kernel/fadump_registered and
- echo 0 > /sys/kernel/fadump_registered for un-register and stop the
- fadump. Once the fadump is un-registered, the system crash will not
- be handled and vmcore will not be captured. This interface can be
- easily integrated with kdump service start/stop.
-
- /sys/kernel/fadump_release_mem
-
- This file is available only when fadump is active during
- second kernel. This is used to release the reserved memory
- region that are held for saving crash dump. To release the
- reserved memory echo 1 to it:
-
- echo 1 > /sys/kernel/fadump_release_mem
-
- After echo 1, the content of the /sys/kernel/debug/powerpc/fadump_region
- file will change to reflect the new memory reservations.
-
- The existing userspace tools (kdump infrastructure) can be easily
- enhanced to use this interface to release the memory reserved for
- dump and continue without 2nd reboot.
-
-Here is the list of files under powerpc debugfs:
-(Assuming debugfs is mounted on /sys/kernel/debug directory.)
-
- /sys/kernel/debug/powerpc/fadump_region
-
- This file shows the reserved memory regions if fadump is
- enabled otherwise this file is empty. The output format
- is:
- <region>: [<start>-<end>] <reserved-size> bytes, Dumped: <dump-size>
-
- e.g.
- Contents when fadump is registered during first kernel
-
- # cat /sys/kernel/debug/powerpc/fadump_region
- CPU : [0x0000006ffb0000-0x0000006fff001f] 0x40020 bytes, Dumped: 0x0
- HPTE: [0x0000006fff0020-0x0000006fff101f] 0x1000 bytes, Dumped: 0x0
- DUMP: [0x0000006fff1020-0x0000007fff101f] 0x10000000 bytes, Dumped: 0x0
-
- Contents when fadump is active during second kernel
-
- # cat /sys/kernel/debug/powerpc/fadump_region
- CPU : [0x0000006ffb0000-0x0000006fff001f] 0x40020 bytes, Dumped: 0x40020
- HPTE: [0x0000006fff0020-0x0000006fff101f] 0x1000 bytes, Dumped: 0x1000
- DUMP: [0x0000006fff1020-0x0000007fff101f] 0x10000000 bytes, Dumped: 0x10000000
- : [0x00000010000000-0x0000006ffaffff] 0x5ffb0000 bytes, Dumped: 0x5ffb0000
-
-NOTE: Please refer to Documentation/filesystems/debugfs.txt on
- how to mount the debugfs filesystem.
-
-
-TODO:
------
- o Need to come up with the better approach to find out more
- accurate boot memory size that is required for a kernel to
- boot successfully when booted with restricted memory.
- o The fadump implementation introduces a fadump crash info structure
- in the scratch area before the ELF core header. The idea of introducing
- this structure is to pass some important crash info data to the second
- kernel which will help second kernel to populate ELF core header with
- correct data before it gets exported through /proc/vmcore. The current
- design implementation does not address a possibility of introducing
- additional fields (in future) to this structure without affecting
- compatibility. Need to come up with the better approach to address this.
- The possible approaches are:
- 1. Introduce version field for version tracking, bump up the version
- whenever a new field is added to the structure in future. The version
- field can be used to find out what fields are valid for the current
- version of the structure.
- 2. Reserve the area of predefined size (say PAGE_SIZE) for this
- structure and have unused area as reserved (initialized to zero)
- for future field additions.
- The advantage of approach 1 over 2 is we don't need to reserve extra space.
----
-Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
-This document is based on the original documentation written for phyp
-assisted dump by Linas Vepstas and Manish Ahuja.
diff --git a/Documentation/powerpc/hvcs.txt b/Documentation/powerpc/hvcs.txt
deleted file mode 100644
index a730ca5a07f..00000000000
--- a/Documentation/powerpc/hvcs.txt
+++ /dev/null
@@ -1,567 +0,0 @@
-===========================================================================
- HVCS
- IBM "Hypervisor Virtual Console Server" Installation Guide
- for Linux Kernel 2.6.4+
- Copyright (C) 2004 IBM Corporation
-
-===========================================================================
-NOTE:Eight space tabs are the optimum editor setting for reading this file.
-===========================================================================
-
- Author(s) : Ryan S. Arnold <rsa@us.ibm.com>
- Date Created: March, 02, 2004
- Last Changed: August, 24, 2004
-
----------------------------------------------------------------------------
-Table of contents:
-
- 1. Driver Introduction:
- 2. System Requirements
- 3. Build Options:
- 3.1 Built-in:
- 3.2 Module:
- 4. Installation:
- 5. Connection:
- 6. Disconnection:
- 7. Configuration:
- 8. Questions & Answers:
- 9. Reporting Bugs:
-
----------------------------------------------------------------------------
-1. Driver Introduction:
-
-This is the device driver for the IBM Hypervisor Virtual Console Server,
-"hvcs". The IBM hvcs provides a tty driver interface to allow Linux user
-space applications access to the system consoles of logically partitioned
-operating systems (Linux and AIX) running on the same partitioned Power5
-ppc64 system. Physical hardware consoles per partition are not practical
-on this hardware so system consoles are accessed by this driver using
-firmware interfaces to virtual terminal devices.
-
----------------------------------------------------------------------------
-2. System Requirements:
-
-This device driver was written using 2.6.4 Linux kernel APIs and will only
-build and run on kernels of this version or later.
-
-This driver was written to operate solely on IBM Power5 ppc64 hardware
-though some care was taken to abstract the architecture dependent firmware
-calls from the driver code.
-
-Sysfs must be mounted on the system so that the user can determine which
-major and minor numbers are associated with each vty-server. Directions
-for sysfs mounting are outside the scope of this document.
-
----------------------------------------------------------------------------
-3. Build Options:
-
-The hvcs driver registers itself as a tty driver. The tty layer
-dynamically allocates a block of major and minor numbers in a quantity
-requested by the registering driver. The hvcs driver asks the tty layer
-for 64 of these major/minor numbers by default to use for hvcs device node
-entries.
-
-If the default number of device entries is adequate then this driver can be
-built into the kernel. If not, the default can be over-ridden by inserting
-the driver as a module with insmod parameters.
-
----------------------------------------------------------------------------
-3.1 Built-in:
-
-The following menuconfig example demonstrates selecting to build this
-driver into the kernel.
-
- Device Drivers --->
- Character devices --->
- <*> IBM Hypervisor Virtual Console Server Support
-
-Begin the kernel make process.
-
----------------------------------------------------------------------------
-3.2 Module:
-
-The following menuconfig example demonstrates selecting to build this
-driver as a kernel module.
-
- Device Drivers --->
- Character devices --->
- <M> IBM Hypervisor Virtual Console Server Support
-
-The make process will build the following kernel modules:
-
- hvcs.ko
- hvcserver.ko
-
-To insert the module with the default allocation execute the following
-commands in the order they appear:
-
- insmod hvcserver.ko
- insmod hvcs.ko
-
-The hvcserver module contains architecture specific firmware calls and must
-be inserted first, otherwise the hvcs module will not find some of the
-symbols it expects.
-
-To override the default use an insmod parameter as follows (requesting 4
-tty devices as an example):
-
- insmod hvcs.ko hvcs_parm_num_devs=4
-
-There is a maximum number of dev entries that can be specified on insmod.
-We think that 1024 is currently a decent maximum number of server adapters
-to allow. This can always be changed by modifying the constant in the
-source file before building.
-
-NOTE: The length of time it takes to insmod the driver seems to be related
-to the number of tty interfaces the registering driver requests.
-
-In order to remove the driver module execute the following command:
-
- rmmod hvcs.ko
-
-The recommended method for installing hvcs as a module is to use depmod to
-build a current modules.dep file in /lib/modules/`uname -r` and then
-execute:
-
-modprobe hvcs hvcs_parm_num_devs=4
-
-The modules.dep file indicates that hvcserver.ko needs to be inserted
-before hvcs.ko and modprobe uses this file to smartly insert the modules in
-the proper order.
-
-The following modprobe command is used to remove hvcs and hvcserver in the
-proper order:
-
-modprobe -r hvcs
-
----------------------------------------------------------------------------
-4. Installation:
-
-The tty layer creates sysfs entries which contain the major and minor
-numbers allocated for the hvcs driver. The following snippet of "tree"
-output of the sysfs directory shows where these numbers are presented:
-
- sys/
- |-- *other sysfs base dirs*
- |
- |-- class
- | |-- *other classes of devices*
- | |
- | `-- tty
- | |-- *other tty devices*
- | |
- | |-- hvcs0
- | | `-- dev
- | |-- hvcs1
- | | `-- dev
- | |-- hvcs2
- | | `-- dev
- | |-- hvcs3
- | | `-- dev
- | |
- | |-- *other tty devices*
- |
- |-- *other sysfs base dirs*
-
-For the above examples the following output is a result of cat'ing the
-"dev" entry in the hvcs directory:
-
- Pow5:/sys/class/tty/hvcs0/ # cat dev
- 254:0
-
- Pow5:/sys/class/tty/hvcs1/ # cat dev
- 254:1
-
- Pow5:/sys/class/tty/hvcs2/ # cat dev
- 254:2
-
- Pow5:/sys/class/tty/hvcs3/ # cat dev
- 254:3
-
-The output from reading the "dev" attribute is the char device major and
-minor numbers that the tty layer has allocated for this driver's use. Most
-systems running hvcs will already have the device entries created or udev
-will do it automatically.
-
-Given the example output above, to manually create a /dev/hvcs* node entry
-mknod can be used as follows:
-
- mknod /dev/hvcs0 c 254 0
- mknod /dev/hvcs1 c 254 1
- mknod /dev/hvcs2 c 254 2
- mknod /dev/hvcs3 c 254 3
-
-Using mknod to manually create the device entries makes these device nodes
-persistent. Once created they will exist prior to the driver insmod.
-
-Attempting to connect an application to /dev/hvcs* prior to insertion of
-the hvcs module will result in an error message similar to the following:
-
- "/dev/hvcs*: No such device".
-
-NOTE: Just because there is a device node present doesn't mean that there
-is a vty-server device configured for that node.
-
----------------------------------------------------------------------------
-5. Connection
-
-Since this driver controls devices that provide a tty interface a user can
-interact with the device node entries using any standard tty-interactive
-method (e.g. "cat", "dd", "echo"). The intent of this driver however, is
-to provide real time console interaction with a Linux partition's console,
-which requires the use of applications that provide bi-directional,
-interactive I/O with a tty device.
-
-Applications (e.g. "minicom" and "screen") that act as terminal emulators
-or perform terminal type control sequence conversion on the data being
-passed through them are NOT acceptable for providing interactive console
-I/O. These programs often emulate antiquated terminal types (vt100 and
-ANSI) and expect inbound data to take the form of one of these supported
-terminal types but they either do not convert, or do not _adequately_
-convert, outbound data into the terminal type of the terminal which invoked
-them (though screen makes an attempt and can apparently be configured with
-much termcap wrestling.)
-
-For this reason kermit and cu are two of the recommended applications for
-interacting with a Linux console via an hvcs device. These programs simply
-act as a conduit for data transfer to and from the tty device. They do not
-require inbound data to take the form of a particular terminal type, nor do
-they cook outbound data to a particular terminal type.
-
-In order to ensure proper functioning of console applications one must make
-sure that once connected to a /dev/hvcs console that the console's $TERM
-env variable is set to the exact terminal type of the terminal emulator
-used to launch the interactive I/O application. If one is using xterm and
-kermit to connect to /dev/hvcs0 when the console prompt becomes available
-one should "export TERM=xterm" on the console. This tells ncurses
-applications that are invoked from the console that they should output
-control sequences that xterm can understand.
-
-As a precautionary measure an hvcs user should always "exit" from their
-session before disconnecting an application such as kermit from the device
-node. If this is not done, the next user to connect to the console will
-continue using the previous user's logged in session which includes
-using the $TERM variable that the previous user supplied.
-
-Hotplug add and remove of vty-server adapters affects which /dev/hvcs* node
-is used to connect to each vty-server adapter. In order to determine which
-vty-server adapter is associated with which /dev/hvcs* node a special sysfs
-attribute has been added to each vty-server sysfs entry. This entry is
-called "index" and showing it reveals an integer that refers to the
-/dev/hvcs* entry to use to connect to that device. For instance cating the
-index attribute of vty-server adapter 30000004 shows the following.
-
- Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat index
- 2
-
-This index of '2' means that in order to connect to vty-server adapter
-30000004 the user should interact with /dev/hvcs2.
-
-It should be noted that due to the system hotplug I/O capabilities of a
-system the /dev/hvcs* entry that interacts with a particular vty-server
-adapter is not guaranteed to remain the same across system reboots. Look
-in the Q & A section for more on this issue.
-
----------------------------------------------------------------------------
-6. Disconnection
-
-As a security feature to prevent the delivery of stale data to an
-unintended target the Power5 system firmware disables the fetching of data
-and discards that data when a connection between a vty-server and a vty has
-been severed. As an example, when a vty-server is immediately disconnected
-from a vty following output of data to the vty the vty adapter may not have
-enough time between when it received the data interrupt and when the
-connection was severed to fetch the data from firmware before the fetch is
-disabled by firmware.
-
-When hvcs is being used to serve consoles this behavior is not a huge issue
-because the adapter stays connected for large amounts of time following
-almost all data writes. When hvcs is being used as a tty conduit to tunnel
-data between two partitions [see Q & A below] this is a huge problem
-because the standard Linux behavior when cat'ing or dd'ing data to a device
-is to open the tty, send the data, and then close the tty. If this driver
-manually terminated vty-server connections on tty close this would close
-the vty-server and vty connection before the target vty has had a chance to
-fetch the data.
-
-Additionally, disconnecting a vty-server and vty only on module removal or
-adapter removal is impractical because other vty-servers in other
-partitions may require the usage of the target vty at any time.
-
-Due to this behavioral restriction disconnection of vty-servers from the
-connected vty is a manual procedure using a write to a sysfs attribute
-outlined below, on the other hand the initial vty-server connection to a
-vty is established automatically by this driver. Manual vty-server
-connection is never required.
-
-In order to terminate the connection between a vty-server and vty the
-"vterm_state" sysfs attribute within each vty-server's sysfs entry is used.
-Reading this attribute reveals the current connection state of the
-vty-server adapter. A zero means that the vty-server is not connected to a
-vty. A one indicates that a connection is active.
-
-Writing a '0' (zero) to the vterm_state attribute will disconnect the VTERM
-connection between the vty-server and target vty ONLY if the vterm_state
-previously read '1'. The write directive is ignored if the vterm_state
-read '0' or if any value other than '0' was written to the vterm_state
-attribute. The following example will show the method used for verifying
-the vty-server connection status and disconnecting a vty-server connection.
-
- Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat vterm_state
- 1
-
- Pow5:/sys/bus/vio/drivers/hvcs/30000004 # echo 0 > vterm_state
-
- Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat vterm_state
- 0
-
-All vty-server connections are automatically terminated when the device is
-hotplug removed and when the module is removed.
-
----------------------------------------------------------------------------
-7. Configuration
-
-Each vty-server has a sysfs entry in the /sys/devices/vio directory, which
-is symlinked in several other sysfs tree directories, notably under the
-hvcs driver entry, which looks like the following example:
-
- Pow5:/sys/bus/vio/drivers/hvcs # ls
- . .. 30000003 30000004 rescan
-
-By design, firmware notifies the hvcs driver of vty-server lifetimes and
-partner vty removals but not the addition of partner vtys. Since an HMC
-Super Admin can add partner info dynamically we have provided the hvcs
-driver sysfs directory with the "rescan" update attribute which will query
-firmware and update the partner info for all the vty-servers that this
-driver manages. Writing a '1' to the attribute triggers the update. An
-explicit example follows:
-
- Pow5:/sys/bus/vio/drivers/hvcs # echo 1 > rescan
-
-Reading the attribute will indicate a state of '1' or '0'. A one indicates
-that an update is in process. A zero indicates that an update has
-completed or was never executed.
-
-Vty-server entries in this directory are a 32 bit partition unique unit
-address that is created by firmware. An example vty-server sysfs entry
-looks like the following:
-
- Pow5:/sys/bus/vio/drivers/hvcs/30000004 # ls
- . current_vty devspec name partner_vtys
- .. index partner_clcs vterm_state
-
-Each entry is provided, by default with a "name" attribute. Reading the
-"name" attribute will reveal the device type as shown in the following
-example:
-
- Pow5:/sys/bus/vio/drivers/hvcs/30000003 # cat name
- vty-server
-
-Each entry is also provided, by default, with a "devspec" attribute which
-reveals the full device specification when read, as shown in the following
-example:
-
- Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat devspec
- /vdevice/vty-server@30000004
-
-Each vty-server sysfs dir is provided with two read-only attributes that
-provide lists of easily parsed partner vty data: "partner_vtys" and
-"partner_clcs".
-
- Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat partner_vtys
- 30000000
- 30000001
- 30000002
- 30000000
- 30000000
-
- Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat partner_clcs
- U5112.428.103048A-V3-C0
- U5112.428.103048A-V3-C2
- U5112.428.103048A-V3-C3
- U5112.428.103048A-V4-C0
- U5112.428.103048A-V5-C0
-
-Reading partner_vtys returns a list of partner vtys. Vty unit address
-numbering is only per-partition-unique so entries will frequently repeat.
-
-Reading partner_clcs returns a list of "converged location codes" which are
-composed of a system serial number followed by "-V*", where the '*' is the
-target partition number, and "-C*", where the '*' is the slot of the
-adapter. The first vty partner corresponds to the first clc item, the
-second vty partner to the second clc item, etc.
-
-A vty-server can only be connected to a single vty at a time. The entry,
-"current_vty" prints the clc of the currently selected partner vty when
-read.
-
-The current_vty can be changed by writing a valid partner clc to the entry
-as in the following example:
-
- Pow5:/sys/bus/vio/drivers/hvcs/30000004 # echo U5112.428.10304
- 8A-V4-C0 > current_vty
-
-Changing the current_vty when a vty-server is already connected to a vty
-does not affect the current connection. The change takes effect when the
-currently open connection is freed.
-
-Information on the "vterm_state" attribute was covered earlier on the
-chapter entitled "disconnection".
-
----------------------------------------------------------------------------
-8. Questions & Answers:
-===========================================================================
-Q: What are the security concerns involving hvcs?
-
-A: There are three main security concerns:
-
- 1. The creator of the /dev/hvcs* nodes has the ability to restrict
- the access of the device entries to certain users or groups. It
- may be best to create a special hvcs group privilege for providing
- access to system consoles.
-
- 2. To provide network security when grabbing the console it is
- suggested that the user connect to the console hosting partition
- using a secure method, such as SSH or sit at a hardware console.
-
- 3. Make sure to exit the user session when done with a console or
- the next vty-server connection (which may be from another
- partition) will experience the previously logged in session.
-
----------------------------------------------------------------------------
-Q: How do I multiplex a console that I grab through hvcs so that other
-people can see it:
-
-A: You can use "screen" to directly connect to the /dev/hvcs* device and
-setup a session on your machine with the console group privileges. As
-pointed out earlier by default screen doesn't provide the termcap settings
-for most terminal emulators to provide adequate character conversion from
-term type "screen" to others. This means that curses based programs may
-not display properly in screen sessions.
-
----------------------------------------------------------------------------
-Q: Why are the colors all messed up?
-Q: Why are the control characters acting strange or not working?
-Q: Why is the console output all strange and unintelligible?
-
-A: Please see the preceding section on "Connection" for a discussion of how
-applications can affect the display of character control sequences.
-Additionally, just because you logged into the console using and xterm
-doesn't mean someone else didn't log into the console with the HMC console
-(vt320) before you and leave the session logged in. The best thing to do
-is to export TERM to the terminal type of your terminal emulator when you
-get the console. Additionally make sure to "exit" the console before you
-disconnect from the console. This will ensure that the next user gets
-their own TERM type set when they login.
-
----------------------------------------------------------------------------
-Q: When I try to CONNECT kermit to an hvcs device I get:
-"Sorry, can't open connection: /dev/hvcs*"What is happening?
-
-A: Some other Power5 console mechanism has a connection to the vty and
-isn't giving it up. You can try to force disconnect the consoles from the
-HMC by right clicking on the partition and then selecting "close terminal".
-Otherwise you have to hunt down the people who have console authority. It
-is possible that you already have the console open using another kermit
-session and just forgot about it. Please review the console options for
-Power5 systems to determine the many ways a system console can be held.
-
-OR
-
-A: Another user may not have a connectivity method currently attached to a
-/dev/hvcs device but the vterm_state may reveal that they still have the
-vty-server connection established. They need to free this using the method
-outlined in the section on "Disconnection" in order for others to connect
-to the target vty.
-
-OR
-
-A: The user profile you are using to execute kermit probably doesn't have
-permissions to use the /dev/hvcs* device.
-
-OR
-
-A: You probably haven't inserted the hvcs.ko module yet but the /dev/hvcs*
-entry still exists (on systems without udev).
-
-OR
-
-A: There is not a corresponding vty-server device that maps to an existing
-/dev/hvcs* entry.
-
----------------------------------------------------------------------------
-Q: When I try to CONNECT kermit to an hvcs device I get:
-"Sorry, write access to UUCP lockfile directory denied."
-
-A: The /dev/hvcs* entry you have specified doesn't exist where you said it
-does? Maybe you haven't inserted the module (on systems with udev).
-
----------------------------------------------------------------------------
-Q: If I already have one Linux partition installed can I use hvcs on said
-partition to provide the console for the install of a second Linux
-partition?
-
-A: Yes granted that your are connected to the /dev/hvcs* device using
-kermit or cu or some other program that doesn't provide terminal emulation.
-
----------------------------------------------------------------------------
-Q: Can I connect to more than one partition's console at a time using this
-driver?
-
-A: Yes. Of course this means that there must be more than one vty-server
-configured for this partition and each must point to a disconnected vty.
-
----------------------------------------------------------------------------
-Q: Does the hvcs driver support dynamic (hotplug) addition of devices?
-
-A: Yes, if you have dlpar and hotplug enabled for your system and it has
-been built into the kernel the hvcs drivers is configured to dynamically
-handle additions of new devices and removals of unused devices.
-
----------------------------------------------------------------------------
-Q: For some reason /dev/hvcs* doesn't map to the same vty-server adapter
-after a reboot. What happened?
-
-A: Assignment of vty-server adapters to /dev/hvcs* entries is always done
-in the order that the adapters are exposed. Due to hotplug capabilities of
-this driver assignment of hotplug added vty-servers may be in a different
-order than how they would be exposed on module load. Rebooting or
-reloading the module after dynamic addition may result in the /dev/hvcs*
-and vty-server coupling changing if a vty-server adapter was added in a
-slot between two other vty-server adapters. Refer to the section above
-on how to determine which vty-server goes with which /dev/hvcs* node.
-Hint; look at the sysfs "index" attribute for the vty-server.
-
----------------------------------------------------------------------------
-Q: Can I use /dev/hvcs* as a conduit to another partition and use a tty
-device on that partition as the other end of the pipe?
-
-A: Yes, on Power5 platforms the hvc_console driver provides a tty interface
-for extra /dev/hvc* devices (where /dev/hvc0 is most likely the console).
-In order to get a tty conduit working between the two partitions the HMC
-Super Admin must create an additional "serial server" for the target
-partition with the HMC gui which will show up as /dev/hvc* when the target
-partition is rebooted.
-
-The HMC Super Admin then creates an additional "serial client" for the
-current partition and points this at the target partition's newly created
-"serial server" adapter (remember the slot). This shows up as an
-additional /dev/hvcs* device.
-
-Now a program on the target system can be configured to read or write to
-/dev/hvc* and another program on the current partition can be configured to
-read or write to /dev/hvcs*. Now you have a tty conduit between two
-partitions.
-
----------------------------------------------------------------------------
-9. Reporting Bugs:
-
-The proper channel for reporting bugs is either through the Linux OS
-distribution company that provided your OS or by posting issues to the
-PowerPC development mailing list at:
-
-linuxppc-dev@lists.ozlabs.org
-
-This request is to provide a documented and searchable public exchange
-of the problems and solutions surrounding this driver for the benefit of
-all users.
diff --git a/Documentation/powerpc/kvm_440.txt b/Documentation/powerpc/kvm_440.txt
deleted file mode 100644
index c02a003fa03..00000000000
--- a/Documentation/powerpc/kvm_440.txt
+++ /dev/null
@@ -1,41 +0,0 @@
-Hollis Blanchard <hollisb@us.ibm.com>
-15 Apr 2008
-
-Various notes on the implementation of KVM for PowerPC 440:
-
-To enforce isolation, host userspace, guest kernel, and guest userspace all
-run at user privilege level. Only the host kernel runs in supervisor mode.
-Executing privileged instructions in the guest traps into KVM (in the host
-kernel), where we decode and emulate them. Through this technique, unmodified
-440 Linux kernels can be run (slowly) as guests. Future performance work will
-focus on reducing the overhead and frequency of these traps.
-
-The usual code flow is started from userspace invoking an "run" ioctl, which
-causes KVM to switch into guest context. We use IVPR to hijack the host
-interrupt vectors while running the guest, which allows us to direct all
-interrupts to kvmppc_handle_interrupt(). At this point, we could either
-- handle the interrupt completely (e.g. emulate "mtspr SPRG0"), or
-- let the host interrupt handler run (e.g. when the decrementer fires), or
-- return to host userspace (e.g. when the guest performs device MMIO)
-
-Address spaces: We take advantage of the fact that Linux doesn't use the AS=1
-address space (in host or guest), which gives us virtual address space to use
-for guest mappings. While the guest is running, the host kernel remains mapped
-in AS=0, but the guest can only use AS=1 mappings.
-
-TLB entries: The TLB entries covering the host linear mapping remain
-present while running the guest. This reduces the overhead of lightweight
-exits, which are handled by KVM running in the host kernel. We keep three
-copies of the TLB:
- - guest TLB: contents of the TLB as the guest sees it
- - shadow TLB: the TLB that is actually in hardware while guest is running
- - host TLB: to restore TLB state when context switching guest -> host
-When a TLB miss occurs because a mapping was not present in the shadow TLB,
-but was present in the guest TLB, KVM handles the fault without invoking the
-guest. Large guest pages are backed by multiple 4KB shadow pages through this
-mechanism.
-
-IO: MMIO and DCR accesses are emulated by userspace. We use virtio for network
-and block IO, so those drivers must be enabled in the guest. It's possible
-that some qemu device emulation (e.g. e1000 or rtl8139) may also work with
-little effort.
diff --git a/Documentation/powerpc/mpc52xx.txt b/Documentation/powerpc/mpc52xx.txt
deleted file mode 100644
index 0d540a31ea1..00000000000
--- a/Documentation/powerpc/mpc52xx.txt
+++ /dev/null
@@ -1,39 +0,0 @@
-Linux 2.6.x on MPC52xx family
------------------------------
-
-For the latest info, go to http://www.246tNt.com/mpc52xx/
-
-To compile/use :
-
- - U-Boot:
- # <edit Makefile to set ARCH=ppc & CROSS_COMPILE=... ( also EXTRAVERSION
- if you wish to ).
- # make lite5200_defconfig
- # make uImage
-
- then, on U-boot:
- => tftpboot 200000 uImage
- => tftpboot 400000 pRamdisk
- => bootm 200000 400000
-
- - DBug:
- # <edit Makefile to set ARCH=ppc & CROSS_COMPILE=... ( also EXTRAVERSION
- if you wish to ).
- # make lite5200_defconfig
- # cp your_initrd.gz arch/ppc/boot/images/ramdisk.image.gz
- # make zImage.initrd
- # make
-
- then in DBug:
- DBug> dn -i zImage.initrd.lite5200
-
-
-Some remarks :
- - The port is named mpc52xxx, and config options are PPC_MPC52xx. The MGT5100
- is not supported, and I'm not sure anyone is interesting in working on it
- so. I didn't took 5xxx because there's apparently a lot of 5xxx that have
- nothing to do with the MPC5200. I also included the 'MPC' for the same
- reason.
- - Of course, I inspired myself from the 2.4 port. If you think I forgot to
- mention you/your company in the copyright of some code, I'll correct it
- ASAP.
diff --git a/Documentation/powerpc/ptrace.txt b/Documentation/powerpc/ptrace.txt
deleted file mode 100644
index f4a5499b7bc..00000000000
--- a/Documentation/powerpc/ptrace.txt
+++ /dev/null
@@ -1,134 +0,0 @@
-GDB intends to support the following hardware debug features of BookE
-processors:
-
-4 hardware breakpoints (IAC)
-2 hardware watchpoints (read, write and read-write) (DAC)
-2 value conditions for the hardware watchpoints (DVC)
-
-For that, we need to extend ptrace so that GDB can query and set these
-resources. Since we're extending, we're trying to create an interface
-that's extendable and that covers both BookE and server processors, so
-that GDB doesn't need to special-case each of them. We added the
-following 3 new ptrace requests.
-
-1. PTRACE_PPC_GETHWDEBUGINFO
-
-Query for GDB to discover the hardware debug features. The main info to
-be returned here is the minimum alignment for the hardware watchpoints.
-BookE processors don't have restrictions here, but server processors have
-an 8-byte alignment restriction for hardware watchpoints. We'd like to avoid
-adding special cases to GDB based on what it sees in AUXV.
-
-Since we're at it, we added other useful info that the kernel can return to
-GDB: this query will return the number of hardware breakpoints, hardware
-watchpoints and whether it supports a range of addresses and a condition.
-The query will fill the following structure provided by the requesting process:
-
-struct ppc_debug_info {
- unit32_t version;
- unit32_t num_instruction_bps;
- unit32_t num_data_bps;
- unit32_t num_condition_regs;
- unit32_t data_bp_alignment;
- unit32_t sizeof_condition; /* size of the DVC register */
- uint64_t features; /* bitmask of the individual flags */
-};
-
-features will have bits indicating whether there is support for:
-
-#define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
-#define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
-#define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
-#define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
-
-2. PTRACE_SETHWDEBUG
-
-Sets a hardware breakpoint or watchpoint, according to the provided structure:
-
-struct ppc_hw_breakpoint {
- uint32_t version;
-#define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
-#define PPC_BREAKPOINT_TRIGGER_READ 0x2
-#define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
- uint32_t trigger_type; /* only some combinations allowed */
-#define PPC_BREAKPOINT_MODE_EXACT 0x0
-#define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
-#define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
-#define PPC_BREAKPOINT_MODE_MASK 0x3
- uint32_t addr_mode; /* address match mode */
-
-#define PPC_BREAKPOINT_CONDITION_MODE 0x3
-#define PPC_BREAKPOINT_CONDITION_NONE 0x0
-#define PPC_BREAKPOINT_CONDITION_AND 0x1
-#define PPC_BREAKPOINT_CONDITION_EXACT 0x1 /* different name for the same thing as above */
-#define PPC_BREAKPOINT_CONDITION_OR 0x2
-#define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
-#define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000 /* byte enable bits */
-#define PPC_BREAKPOINT_CONDITION_BE(n) (1<<((n)+16))
- uint32_t condition_mode; /* break/watchpoint condition flags */
-
- uint64_t addr;
- uint64_t addr2;
- uint64_t condition_value;
-};
-
-A request specifies one event, not necessarily just one register to be set.
-For instance, if the request is for a watchpoint with a condition, both the
-DAC and DVC registers will be set in the same request.
-
-With this GDB can ask for all kinds of hardware breakpoints and watchpoints
-that the BookE supports. COMEFROM breakpoints available in server processors
-are not contemplated, but that is out of the scope of this work.
-
-ptrace will return an integer (handle) uniquely identifying the breakpoint or
-watchpoint just created. This integer will be used in the PTRACE_DELHWDEBUG
-request to ask for its removal. Return -ENOSPC if the requested breakpoint
-can't be allocated on the registers.
-
-Some examples of using the structure to:
-
-- set a breakpoint in the first breakpoint register
-
- p.version = PPC_DEBUG_CURRENT_VERSION;
- p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
- p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
- p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
- p.addr = (uint64_t) address;
- p.addr2 = 0;
- p.condition_value = 0;
-
-- set a watchpoint which triggers on reads in the second watchpoint register
-
- p.version = PPC_DEBUG_CURRENT_VERSION;
- p.trigger_type = PPC_BREAKPOINT_TRIGGER_READ;
- p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
- p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
- p.addr = (uint64_t) address;
- p.addr2 = 0;
- p.condition_value = 0;
-
-- set a watchpoint which triggers only with a specific value
-
- p.version = PPC_DEBUG_CURRENT_VERSION;
- p.trigger_type = PPC_BREAKPOINT_TRIGGER_READ;
- p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
- p.condition_mode = PPC_BREAKPOINT_CONDITION_AND | PPC_BREAKPOINT_CONDITION_BE_ALL;
- p.addr = (uint64_t) address;
- p.addr2 = 0;
- p.condition_value = (uint64_t) condition;
-
-- set a ranged hardware breakpoint
-
- p.version = PPC_DEBUG_CURRENT_VERSION;
- p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
- p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
- p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
- p.addr = (uint64_t) begin_range;
- p.addr2 = (uint64_t) end_range;
- p.condition_value = 0;
-
-3. PTRACE_DELHWDEBUG
-
-Takes an integer which identifies an existing breakpoint or watchpoint
-(i.e., the value returned from PTRACE_SETHWDEBUG), and deletes the
-corresponding breakpoint or watchpoint..
diff --git a/Documentation/powerpc/qe_firmware.txt b/Documentation/powerpc/qe_firmware.txt
deleted file mode 100644
index 2031ddb33d0..00000000000
--- a/Documentation/powerpc/qe_firmware.txt
+++ /dev/null
@@ -1,295 +0,0 @@
- Freescale QUICC Engine Firmware Uploading
- -----------------------------------------
-
-(c) 2007 Timur Tabi <timur at freescale.com>,
- Freescale Semiconductor
-
-Table of Contents
-=================
-
- I - Software License for Firmware
-
- II - Microcode Availability
-
- III - Description and Terminology
-
- IV - Microcode Programming Details
-
- V - Firmware Structure Layout
-
- VI - Sample Code for Creating Firmware Files
-
-Revision Information
-====================
-
-November 30, 2007: Rev 1.0 - Initial version
-
-I - Software License for Firmware
-=================================
-
-Each firmware file comes with its own software license. For information on
-the particular license, please see the license text that is distributed with
-the firmware.
-
-II - Microcode Availability
-===========================
-
-Firmware files are distributed through various channels. Some are available on
-http://opensource.freescale.com. For other firmware files, please contact
-your Freescale representative or your operating system vendor.
-
-III - Description and Terminology
-================================
-
-In this document, the term 'microcode' refers to the sequence of 32-bit
-integers that compose the actual QE microcode.
-
-The term 'firmware' refers to a binary blob that contains the microcode as
-well as other data that
-
- 1) describes the microcode's purpose
- 2) describes how and where to upload the microcode
- 3) specifies the values of various registers
- 4) includes additional data for use by specific device drivers
-
-Firmware files are binary files that contain only a firmware.
-
-IV - Microcode Programming Details
-===================================
-
-The QE architecture allows for only one microcode present in I-RAM for each
-RISC processor. To replace any current microcode, a full QE reset (which
-disables the microcode) must be performed first.
-
-QE microcode is uploaded using the following procedure:
-
-1) The microcode is placed into I-RAM at a specific location, using the
- IRAM.IADD and IRAM.IDATA registers.
-
-2) The CERCR.CIR bit is set to 0 or 1, depending on whether the firmware
- needs split I-RAM. Split I-RAM is only meaningful for SOCs that have
- QEs with multiple RISC processors, such as the 8360. Splitting the I-RAM
- allows each processor to run a different microcode, effectively creating an
- asymmetric multiprocessing (AMP) system.
-
-3) The TIBCR trap registers are loaded with the addresses of the trap handlers
- in the microcode.
-
-4) The RSP.ECCR register is programmed with the value provided.
-
-5) If necessary, device drivers that need the virtual traps and extended mode
- data will use them.
-
-Virtual Microcode Traps
-
-These virtual traps are conditional branches in the microcode. These are
-"soft" provisional introduced in the ROMcode in order to enable higher
-flexibility and save h/w traps If new features are activated or an issue is
-being fixed in the RAM package utilizing they should be activated. This data
-structure signals the microcode which of these virtual traps is active.
-
-This structure contains 6 words that the application should copy to some
-specific been defined. This table describes the structure.
-
- ---------------------------------------------------------------
- | Offset in | | Destination Offset | Size of |
- | array | Protocol | within PRAM | Operand |
- --------------------------------------------------------------|
- | 0 | Ethernet | 0xF8 | 4 bytes |
- | | interworking | | |
- ---------------------------------------------------------------
- | 4 | ATM | 0xF8 | 4 bytes |
- | | interworking | | |
- ---------------------------------------------------------------
- | 8 | PPP | 0xF8 | 4 bytes |
- | | interworking | | |
- ---------------------------------------------------------------
- | 12 | Ethernet RX | 0x22 | 1 byte |
- | | Distributor Page | | |
- ---------------------------------------------------------------
- | 16 | ATM Globtal | 0x28 | 1 byte |
- | | Params Table | | |
- ---------------------------------------------------------------
- | 20 | Insert Frame | 0xF8 | 4 bytes |
- ---------------------------------------------------------------
-
-
-Extended Modes
-
-This is a double word bit array (64 bits) that defines special functionality
-which has an impact on the softwarew drivers. Each bit has its own impact
-and has special instructions for the s/w associated with it. This structure is
-described in this table:
-
- -----------------------------------------------------------------------
- | Bit # | Name | Description |
- -----------------------------------------------------------------------
- | 0 | General | Indicates that prior to each host command |
- | | push command | given by the application, the software must |
- | | | assert a special host command (push command)|
- | | | CECDR = 0x00800000. |
- | | | CECR = 0x01c1000f. |
- -----------------------------------------------------------------------
- | 1 | UCC ATM | Indicates that after issuing ATM RX INIT |
- | | RX INIT | command, the host must issue another special|
- | | push command | command (push command) and immediately |
- | | | following that re-issue the ATM RX INIT |
- | | | command. (This makes the sequence of |
- | | | initializing the ATM receiver a sequence of |
- | | | three host commands) |
- | | | CECDR = 0x00800000. |
- | | | CECR = 0x01c1000f. |
- -----------------------------------------------------------------------
- | 2 | Add/remove | Indicates that following the specific host |
- | | command | command: "Add/Remove entry in Hash Lookup |
- | | validation | Table" used in Interworking setup, the user |
- | | | must issue another command. |
- | | | CECDR = 0xce000003. |
- | | | CECR = 0x01c10f58. |
- -----------------------------------------------------------------------
- | 3 | General push | Indicates that the s/w has to initialize |
- | | command | some pointers in the Ethernet thread pages |
- | | | which are used when Header Compression is |
- | | | activated. The full details of these |
- | | | pointers is located in the software drivers.|
- -----------------------------------------------------------------------
- | 4 | General push | Indicates that after issuing Ethernet TX |
- | | command | INIT command, user must issue this command |
- | | | for each SNUM of Ethernet TX thread. |
- | | | CECDR = 0x00800003. |
- | | | CECR = 0x7'b{0}, 8'b{Enet TX thread SNUM}, |
- | | | 1'b{1}, 12'b{0}, 4'b{1} |
- -----------------------------------------------------------------------
- | 5 - 31 | N/A | Reserved, set to zero. |
- -----------------------------------------------------------------------
-
-V - Firmware Structure Layout
-==============================
-
-QE microcode from Freescale is typically provided as a header file. This
-header file contains macros that define the microcode binary itself as well as
-some other data used in uploading that microcode. The format of these files
-do not lend themselves to simple inclusion into other code. Hence,
-the need for a more portable format. This section defines that format.
-
-Instead of distributing a header file, the microcode and related data are
-embedded into a binary blob. This blob is passed to the qe_upload_firmware()
-function, which parses the blob and performs everything necessary to upload
-the microcode.
-
-All integers are big-endian. See the comments for function
-qe_upload_firmware() for up-to-date implementation information.
-
-This structure supports versioning, where the version of the structure is
-embedded into the structure itself. To ensure forward and backwards
-compatibility, all versions of the structure must use the same 'qe_header'
-structure at the beginning.
-
-'header' (type: struct qe_header):
- The 'length' field is the size, in bytes, of the entire structure,
- including all the microcode embedded in it, as well as the CRC (if
- present).
-
- The 'magic' field is an array of three bytes that contains the letters
- 'Q', 'E', and 'F'. This is an identifier that indicates that this
- structure is a QE Firmware structure.
-
- The 'version' field is a single byte that indicates the version of this
- structure. If the layout of the structure should ever need to be
- changed to add support for additional types of microcode, then the
- version number should also be changed.
-
-The 'id' field is a null-terminated string(suitable for printing) that
-identifies the firmware.
-
-The 'count' field indicates the number of 'microcode' structures. There
-must be one and only one 'microcode' structure for each RISC processor.
-Therefore, this field also represents the number of RISC processors for this
-SOC.
-
-The 'soc' structure contains the SOC numbers and revisions used to match
-the microcode to the SOC itself. Normally, the microcode loader should
-check the data in this structure with the SOC number and revisions, and
-only upload the microcode if there's a match. However, this check is not
-made on all platforms.
-
-Although it is not recommended, you can specify '0' in the soc.model
-field to skip matching SOCs altogether.
-
-The 'model' field is a 16-bit number that matches the actual SOC. The
-'major' and 'minor' fields are the major and minor revision numbers,
-respectively, of the SOC.
-
-For example, to match the 8323, revision 1.0:
- soc.model = 8323
- soc.major = 1
- soc.minor = 0
-
-'padding' is necessary for structure alignment. This field ensures that the
-'extended_modes' field is aligned on a 64-bit boundary.
-
-'extended_modes' is a bitfield that defines special functionality which has an
-impact on the device drivers. Each bit has its own impact and has special
-instructions for the driver associated with it. This field is stored in
-the QE library and available to any driver that calles qe_get_firmware_info().
-
-'vtraps' is an array of 8 words that contain virtual trap values for each
-virtual traps. As with 'extended_modes', this field is stored in the QE
-library and available to any driver that calles qe_get_firmware_info().
-
-'microcode' (type: struct qe_microcode):
- For each RISC processor there is one 'microcode' structure. The first
- 'microcode' structure is for the first RISC, and so on.
-
- The 'id' field is a null-terminated string suitable for printing that
- identifies this particular microcode.
-
- 'traps' is an array of 16 words that contain hardware trap values
- for each of the 16 traps. If trap[i] is 0, then this particular
- trap is to be ignored (i.e. not written to TIBCR[i]). The entire value
- is written as-is to the TIBCR[i] register, so be sure to set the EN
- and T_IBP bits if necessary.
-
- 'eccr' is the value to program into the ECCR register.
-
- 'iram_offset' is the offset into IRAM to start writing the
- microcode.
-
- 'count' is the number of 32-bit words in the microcode.
-
- 'code_offset' is the offset, in bytes, from the beginning of this
- structure where the microcode itself can be found. The first
- microcode binary should be located immediately after the 'microcode'
- array.
-
- 'major', 'minor', and 'revision' are the major, minor, and revision
- version numbers, respectively, of the microcode. If all values are 0,
- then these fields are ignored.
-
- 'reserved' is necessary for structure alignment. Since 'microcode'
- is an array, the 64-bit 'extended_modes' field needs to be aligned
- on a 64-bit boundary, and this can only happen if the size of
- 'microcode' is a multiple of 8 bytes. To ensure that, we add
- 'reserved'.
-
-After the last microcode is a 32-bit CRC. It can be calculated using
-this algorithm:
-
-u32 crc32(const u8 *p, unsigned int len)
-{
- unsigned int i;
- u32 crc = 0;
-
- while (len--) {
- crc ^= *p++;
- for (i = 0; i < 8; i++)
- crc = (crc >> 1) ^ ((crc & 1) ? 0xedb88320 : 0);
- }
- return crc;
-}
-
-VI - Sample Code for Creating Firmware Files
-============================================
-
-A Python program that creates firmware binaries from the header files normally
-distributed by Freescale can be found on http://opensource.freescale.com.
diff --git a/Documentation/powerpc/sound.txt b/Documentation/powerpc/sound.txt
deleted file mode 100644
index df23d95e03a..00000000000
--- a/Documentation/powerpc/sound.txt
+++ /dev/null
@@ -1,81 +0,0 @@
- Information about PowerPC Sound support
-=====================================================================
-
-Please mail me (Cort Dougan, cort@fsmlabs.com) if you have questions,
-comments or corrections.
-
-Last Change: 6.16.99
-
-This just covers sound on the PReP and CHRP systems for now and later
-will contain information on the PowerMac's.
-
-Sound on PReP has been tested and is working with the PowerStack and IBM
-Power Series onboard sound systems which are based on the cs4231(2) chip.
-The sound options when doing the make config are a bit different from
-the default, though.
-
-The I/O base, irq and dma lines that you enter during the make config
-are ignored and are set when booting according to the machine type.
-This is so that one binary can be used for Motorola and IBM machines
-which use different values and isn't allowed by the driver, so things
-are hacked together in such a way as to allow this information to be
-set automatically on boot.
-
-1. Motorola PowerStack PReP machines
-
- Enable support for "Crystal CS4232 based (PnP) cards" and for the
- Microsoft Sound System. The MSS isn't used, but some of the routines
- that the CS4232 driver uses are in it.
-
- Although the options you set are ignored and determined automatically
- on boot these are included for information only:
-
- (830) CS4232 audio I/O base 530, 604, E80 or F40
- (10) CS4232 audio IRQ 5, 7, 9, 11, 12 or 15
- (6) CS4232 audio DMA 0, 1 or 3
- (7) CS4232 second (duplex) DMA 0, 1 or 3
-
- This will allow simultaneous record and playback, as 2 different dma
- channels are used.
-
- The sound will be all left channel and very low volume since the
- auxiliary input isn't muted by default. I had the changes necessary
- for this in the kernel but the sound driver maintainer didn't want
- to include them since it wasn't common in other machines. To fix this
- you need to mute it using a mixer utility of some sort (if you find one
- please let me know) or by patching the driver yourself and recompiling.
-
- There is a problem on the PowerStack 2's (PowerStack Pro's) using a
- different irq/drq than the kernel expects. Unfortunately, I don't know
- which irq/drq it is so if anyone knows please email me.
-
- Midi is not supported since the cs4232 driver doesn't support midi yet.
-
-2. IBM PowerPersonal PReP machines
-
- I've only tested sound on the Power Personal Series of IBM workstations
- so if you try it on others please let me know the result. I'm especially
- interested in the 43p's sound system, which I know nothing about.
-
- Enable support for "Crystal CS4232 based (PnP) cards" and for the
- Microsoft Sound System. The MSS isn't used, but some of the routines
- that the CS4232 driver uses are in it.
-
- Although the options you set are ignored and determined automatically
- on boot these are included for information only:
-
- (530) CS4232 audio I/O base 530, 604, E80 or F40
- (5) CS4232 audio IRQ 5, 7, 9, 11, 12 or 15
- (1) CS4232 audio DMA 0, 1 or 3
- (7) CS4232 second (duplex) DMA 0, 1 or 3
- (330) CS4232 MIDI I/O base 330, 370, 3B0 or 3F0
- (9) CS4232 MIDI IRQ 5, 7, 9, 11, 12 or 15
-
- This setup does _NOT_ allow for recording yet.
-
- Midi is not supported since the cs4232 driver doesn't support midi yet.
-
-2. IBM CHRP
-
- I have only tested this on the 43P-150. Build the kernel with the cs4232
- set as a module and load the module with irq=9 dma=1 dma2=2 io=0x550
diff --git a/Documentation/powerpc/zImage_layout.txt b/Documentation/powerpc/zImage_layout.txt
deleted file mode 100644
index 048e0150f57..00000000000
--- a/Documentation/powerpc/zImage_layout.txt
+++ /dev/null
@@ -1,47 +0,0 @@
- Information about the Linux/PPC kernel images
-=====================================================================
-
-Please mail me (Cort Dougan, cort@fsmlabs.com) if you have questions,
-comments or corrections.
-
-This document is meant to answer several questions I've had about how
-the PReP system boots and how Linux/PPC interacts with that mechanism.
-It would be nice if we could have information on how other architectures
-boot here as well. If you have anything to contribute, please
-let me know.
-
-
-1. PReP boot file
-
- This is the file necessary to boot PReP systems from floppy or
- hard drive. The firmware reads the PReP partition table entry
- and will load the image accordingly.
-
- To boot the zImage, copy it onto a floppy with dd if=zImage of=/dev/fd0h1440
- or onto a PReP hard drive partition with dd if=zImage of=/dev/sda4
- assuming you've created a PReP partition (type 0x41) with fdisk on
- /dev/sda4.
-
- The layout of the image format is:
-
- 0x0 +------------+
- | | PReP partition table entry
- | |
- 0x400 +------------+
- | | Bootstrap program code + data
- | |
- | |
- +------------+
- | | compressed kernel, elf header removed
- +------------+
- | | initrd (if loaded)
- +------------+
- | | Elf section table for bootstrap program
- +------------+
-
-
-2. MBX boot file
-
- The MBX boards can load an elf image, and relocate it to the
- proper location in memory - it copies the image to the location it was
- linked at.