summaryrefslogtreecommitdiffstats
path: root/Documentation/cpu-freq/core.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/cpu-freq/core.txt')
-rw-r--r--Documentation/cpu-freq/core.txt98
1 files changed, 0 insertions, 98 deletions
diff --git a/Documentation/cpu-freq/core.txt b/Documentation/cpu-freq/core.txt
deleted file mode 100644
index ce0666e..0000000
--- a/Documentation/cpu-freq/core.txt
+++ /dev/null
@@ -1,98 +0,0 @@
- CPU frequency and voltage scaling code in the Linux(TM) kernel
-
-
- L i n u x C P U F r e q
-
- C P U F r e q C o r e
-
-
- Dominik Brodowski <linux@brodo.de>
- David Kimdon <dwhedon@debian.org>
-
-
-
- Clock scaling allows you to change the clock speed of the CPUs on the
- fly. This is a nice method to save battery power, because the lower
- the clock speed, the less power the CPU consumes.
-
-
-Contents:
----------
-1. CPUFreq core and interfaces
-2. CPUFreq notifiers
-
-1. General Information
-=======================
-
-The CPUFreq core code is located in drivers/cpufreq/cpufreq.c. This
-cpufreq code offers a standardized interface for the CPUFreq
-architecture drivers (those pieces of code that do actual
-frequency transitions), as well as to "notifiers". These are device
-drivers or other part of the kernel that need to be informed of
-policy changes (ex. thermal modules like ACPI) or of all
-frequency changes (ex. timing code) or even need to force certain
-speed limits (like LCD drivers on ARM architecture). Additionally, the
-kernel "constant" loops_per_jiffy is updated on frequency changes
-here.
-
-Reference counting is done by cpufreq_get_cpu and cpufreq_put_cpu,
-which make sure that the cpufreq processor driver is correctly
-registered with the core, and will not be unloaded until
-cpufreq_put_cpu is called.
-
-2. CPUFreq notifiers
-====================
-
-CPUFreq notifiers conform to the standard kernel notifier interface.
-See linux/include/linux/notifier.h for details on notifiers.
-
-There are two different CPUFreq notifiers - policy notifiers and
-transition notifiers.
-
-
-2.1 CPUFreq policy notifiers
-----------------------------
-
-These are notified when a new policy is intended to be set. Each
-CPUFreq policy notifier is called three times for a policy transition:
-
-1.) During CPUFREQ_ADJUST all CPUFreq notifiers may change the limit if
- they see a need for this - may it be thermal considerations or
- hardware limitations.
-
-2.) During CPUFREQ_INCOMPATIBLE only changes may be done in order to avoid
- hardware failure.
-
-3.) And during CPUFREQ_NOTIFY all notifiers are informed of the new policy
- - if two hardware drivers failed to agree on a new policy before this
- stage, the incompatible hardware shall be shut down, and the user
- informed of this.
-
-The phase is specified in the second argument to the notifier.
-
-The third argument, a void *pointer, points to a struct cpufreq_policy
-consisting of five values: cpu, min, max, policy and max_cpu_freq. min
-and max are the lower and upper frequencies (in kHz) of the new
-policy, policy the new policy, cpu the number of the affected CPU; and
-max_cpu_freq the maximum supported CPU frequency. This value is given
-for informational purposes only.
-
-
-2.2 CPUFreq transition notifiers
---------------------------------
-
-These are notified twice when the CPUfreq driver switches the CPU core
-frequency and this change has any external implications.
-
-The second argument specifies the phase - CPUFREQ_PRECHANGE or
-CPUFREQ_POSTCHANGE.
-
-The third argument is a struct cpufreq_freqs with the following
-values:
-cpu - number of the affected CPU
-old - old frequency
-new - new frequency
-
-If the cpufreq core detects the frequency has changed while the system
-was suspended, these notifiers are called with CPUFREQ_RESUMECHANGE as
-second argument.