
EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 1

Andrew Overholt, Bernhard Merkle

Hands On With the C/C++ IDE

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 2

Hands On With The C/C++ IDE

In this tutorial, attendees will be led through focused
examples that illustrate how to effectively use the C/C++
IDE.

A set of C/C++ projects will show users how to take
advantage of the CDT to develop, build, debug, test, and
profile their code within Eclipse.

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 3

Virtual Images: VirtualBox/VM-Ware with Fetora14

Easy Tutorial Setup: Use Virtual Images:
– HIGHLY RECOMMENDED: ready to go
– 4GB Virtual Box Image File
– Fedora 14 pre-installed with Eclipse CDT Linux Tools
– Available for

• Oracle Virtual Box

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 4

Tutorial Setup 101

Copy VirtualBox-Image somewhere on HardDrive (4GB)

Install VirtualBox-Installer (for your OS)
We have Installers for Windows, MacOS, Linux, AMD/Intel

Startup VirtualBox
– MachineAdd… (Ctrl-A)
– Select Fedora.vbox (Copied in Step1)
– Startup the “Fedora” Virtual Machine
– Login: User “ece2011”, Password “ece2011”

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 5

Tutorial Setup 101

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 6

Tutorial Setup 101

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 7

Glossary and architecture

Linux Tools
Project

Other C/C++
plugins

C/C++ Development Tooling (CDT)

Eclipse Platform Native toolchain

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 8

Exercises

– Discovering and fixing source code errors
– Configuring the build
– Working with breakpoints and data available while debugging
– Finding memory usage problems
– Tracking down performance bottlenecks
– Performing refactorings
– Integration with UnitTests
– Finding bugs and errors with static analysis

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 9

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 10

Overview

Test Driven Development
– Eclipse plugins for TDD: CUTE
– Implementing an example

Static Analysis (SA)
– 3 rules of Scott Meyers “Effective C++ 2nd” (Item 3, 11, 14)
– Tools for SA:

• Lint, gcc –weffc++

– Eclipse plugins for SA:
• Codan
• Linticator
• Includator

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 11

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 12

Overview

Test Driven Development
– Eclipse plugins for TDD: CUTE
– Implementing an example

Static Analysis (SA)
– 3 rules of Scott Meyers “Effective C++ 2nd” (Item 3, 11, 14)
– Tools for SA:

• Lint, gcc –weffc++

– Eclipse plugins for SA:
• Codan
• Linticator
• Includator

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 13

CUTE

Project of IFS in Rapperswil, CH
– http://www.cute-test.com

Features
– “The JUnit for C/C++ Programmers”
– CUTE = C(++) Unit Testing Easy

– Wizards to initialize and set up new tests
– Test navigator with green/red bar
– Diff-viewer for failing tests

http://www.cute-test.com/

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 14

Vicious Circle: Testing – Stress

Help:
– Write test FIRST !
– Automate tests
– Run them often

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 15

Structure of a typical Unit Testing Framework

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 16

Structure of a typical Unit Testing Framework

Test Assertion / Check statement
– used in

Test (Member-)Function
– defined in

TestCase Subclass bundling Tests
– its objects contained in

Test Suite collecting test objects
– executed by

Test Runner (often in a main() function)
– delivers result

OK or Failure

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 17

Using CUTE: it IS EASY !!!

#include "cute.h"

ASSERT(condition);
– fails if condition is false

ASSERT_EQUAL(expected,actual);
– fails if exected is not equal to actual

add a message by appending M
– ASSERTM(msg,condition)
– ASSERT_EQUALM(msg,exp,act)

FAIL(); FAILM(msg)
– fails always, use to mark unwritten tests
– or for checking exceptions

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 18

Collecting multiple Tests

CUTE collects test objects in cute::test_suite
– this is just a std::vector<cute::test>

add your tests to your test suite
– s.push_back(CUTE(testfunction));
– s.push_back(testfunctor());

An overloaded operator+= could ease syntax:
– s += CUTE(testfunction);
– s += testfunctor();

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 19

My first CUTE Test

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 20

CUTE: Test Fixtures

#include "cute.h"
#include "cute_equals.h"

#include "CircularBuffer.h" // if you have this class separate

struct ATest {
 CircularBuffer<int> buf; // SUT == System Under Test

 ATest():buf(4){}
 void testEmpty(){ ASSERT(buf.empty());}
 void testNotFull(){ ASSERT(!buf.full());}
 void testSizeZero(){ ASSERT_EQUAL(0,buf.size());}
};

#include "cute_testmember.h"
....
s.push_back(CUTE_SMEMFUN(ATest,testEmpty));
s.push_back(CUTE_SMEMFUN(ATest,testNotFull));
s.push_back(CUTE_SMEMFUN(ATest,testSizeZero));
...

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 21

My first CUTE Test

Create new C++ CUTE project
– In Project Explorer

• New Project
• C++ Project

• CUTE Project
• give project name

Let the project compile

Run binary as a CUTE Test
– Observe Result in CUTE
– Results Tab and Console
– Navigate to the failing test

Fix the Test and observe

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 22

My first CUTE Test

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 23

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 24

TDD Example

– Start with a TEST FIRST !!!

– See Requirements R1…R4 for more details

– Requirement Priorities
• High (++):

must be completed to reach minimum usable subset
• Medium (+):

useful and should have, but could in principle live without
• Low :

optional, nice to have but definitely not essential

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 25

RE1 (++): Creation and Output of Strings

Objective
– Allow to create a string with a initial or a default value
– Allow to print its value on the console
– Allow to print the length of the string value

Details:
– String s1();
– String s2(“Hello world”);
– s1.print() results in “”
– s2.print () results in “Hello world”);
– s1.length() == 0;
– s2.length() == 11;

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 26

RE2 (+): Common String operations

Objective
– Allow common string manipulations,

e.g. toUpper(), toLower(), trim()

Details
– String e(“EclipseCon”);
– e.toUpper() ECLIPSECON
– e.toLower() eclipsecon
– e.trim() EclipseCon

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 27

RE3 (++): Support assignment, concatenation etc

Objective
– Extend with additional important convenience operations

Details
– String s1(“one”), String s2(“twenty”);
– s1 = s2; // results in s1 == “twenty”

– String s3 = s2 + s1; // results in S3 == “twentyone”

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 28

RE4 (): Additional operations

Objective
– Support additional convenience operations

Details
– void clear()
– int compare(const MyString& other)
– support for operator <, ==, > etc.
– boolean contains(const MyString& other)
– starts/endsWith(const MyString& other)
– char operator[int pos]/char at(int pos)

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 29

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 30

Overview

Test Driven Development
– Eclipse plugins for TDD: CUTE
– Implementing an example

Static Analysis (SA)
– 3 rules of Scott Meyers “Effective C++ 2nd” (Item 3, 11, 14)
– Tools for SA:

• Lint, gcc –weffc++

– Eclipse plugins for SA:
• Codan
• Linticator
• Includator

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 31

Possible levels of Static Analysis:

Micro-Level
– Code, MISRA-C
– e.g: =, ==, { },

Macro-Level
– Class-Design, Effective Rules for C++, Java, C#
– e.g: by reference, String concat, Exception-Handling

Architecture-Level:
– Layers, Graphs, Subsystems, Compoments, Interfaces
– e.g: Coupling, Dependency, etc…

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 32

Critical areas of C (C Standard)

...are described in Appendix F/ANSI or G/ISO
– Unspecified behaviour
– Undefined behaviour
– Implementation-defined behaviour
– Locale-specific behaviour

failures can be detected
– at compilation stage / static

– at run-time / dynamic

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 33

Unspecified behaviour

a * b + c;
...
(a * b) + c;
...
a * (b + c);

a * (f() + g());

a = i + b[++i];
a = 2 + b[3]; // valid compiler implementation
a = 3 + b[3]; // valid compiler implementation

for (i = 0; i < 100; a[i++] = b[i])
{
 ...;
}

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 34

Empirically determined misbehaviour

Errors of omission and addition

int a, b;
...
if (a = b)
{
 ...
}

...
a == b;
...

...
if (a == b);
{
 ...
}

- occurs every 3306 lines in commerical C code

- occurs every 12325 lines in commerical C code

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 35

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 36

Overview: EC++ 2nd Edition

– Shifting from C to C++ (Item 1 - 4)

– Memory Management (Item 5 - 10)
– Constructors, Destructors, Assignment Operators (Item 11 - 17)

– Classes and Functions: Design and Declaration (Item 18 - 28)
– Classes and Functions: Implementation (Item 29 - 34)
– Inheritance and Object-Oriented Design (Item 35 - 44)

– Miscellany (Item 45 - 50)

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 37

Support of Effective C++ in tools: e.g. g++ -WeffC++

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 38

Constructor(s), Destructor, and Assignment Oper

Ctor, Dtor, (Cctor), operator=

every class you write will have
– one or more constructors,
– a destructor, and
– an assignment operator

In fact, they already HAVE one if you don‘t define it (Item50)

these are your bread-and-butter functions

it's vital that you get them right

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 39

Item 11: cctor & operator= for classes with dny. memory

Example:

// a poorly designed String class

class String {

public:

 String(const char *value);

 ~String();

 ... // no copy ctor or operator=

private:

 char *data;

};

file:///home/overholt/C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI11_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 40

Item 11: cctor & operator= for classes with dny. memory

String::String(const char *value)

{

 if (value) {

 data = new char[strlen(value) + 1];

 strcpy(data, value);

 }

 else {

 data = new char[1];

 *data = '\0';

 }

}

inline String::~String() { delete [] data; }

file:///home/overholt/C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI11_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 41

Item 11: cctor & operator= for classes with dny. memory

String a("Hello");
String b("World");
b = a; //…

– problems during assignment:
• multiple pointers on the SAME data
• multiple deletes are called on the SAME data

– there is no client-defined operator=
– default assignment operator performs memberwise assignment

from the members (just a bitwise copy)

void doNothing(String localString) {}

String s = "The Truth Is Out There";
doNothing(s); //…

– The case of the copy constructor differs a little from that of the
assignment operator

file:///home/overholt/C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI11_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 42

Item 11: cctor & op= for classes with memory

solution to these kinds of pointer aliasing problems:
– write your own versions of

• the copy constructor and
• the assignment operator

if you have any pointers in your class

– Inside those functions, you can either
• copy the pointed-to data structures, every object has its own copy
• implement some kind of reference-counting scheme

if you want to inhibit assignment or copy of this class
– You declare the functions (private, as it turns out),

but you don't define (i.e., implement) them at all (Item 27)
– Or use boost:non_copyable

file:///home/overholt/C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI11_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 43

default and delete in C++0x

struct NC { // NonCopyable „old style“
NC() {…};

private:
NC(const NC&); // no impl !
NC& operator=(const NC&); // no impl !

};

struct NC { // NonCopyable in C++0x
NC() = default;
NC(const NC&) = delete;
NC& operator=(const NC&) = delete;

};

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 44

Item 11: cctor & operator= for classes with dny. memory

Declare a copy constructor and an assignment
operator for classes with dynamically allocated
memory (ressources)

Example:

// a poorly designed String class
class String {
public:
 String(const char *value);
 ~String();
 ... // TODO !!! copy ctor AND operator=
private:
 char *data;
};

file:///home/overholt/C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI11_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 45

Item 14: have base classes have virtual dtors.

class Target {
public:
 Target() { ++numTargets; }
 Target(const Target&) { ++numTargets; }
 ~Target() { --numTargets; }

 static size_t numberOfTargets() { return numTargets; }
 virtual bool fire();
private:
 static size_t numTargets; // object counter
};

// Target.cpp init static member
size_t Target::numTargets = 0;

class EnemyTank: public Target {
public:
 EnemyTank() { ++numTanks; }
 EnemyTank(const EnemyTank& rhs): Target(rhs) { ++numTanks; }
 ~EnemyTank() { --numTanks; }

 static size_t numberOfTanks() { return numTanks; }
 virtual bool fire();
private:
 static size_t numTanks; // object counter for tanks
};

file:///home/overholt/C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI14_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 46

Item 14: have base classes have virtual dtors.

Target *targetPtr = new EnemyTank;

...

delete targetPtr;

file:///home/overholt/C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI14_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 47

Item 14: have base classes have virtual dtors.

Target *targetPtr = new EnemyTank;

...

delete targetPtr; //behaviour is undefined if no virtual dtor

– rule:
declare a virtual destructor in a class if and only if that class
contains at least one virtual function

– Efficiency in C++: declaring all destructors virtual is just as wrong
as never declaring them virtual

– Finally, it can be convenient to declare pure virtual destructors in
some classes

– one twist, however: you must provide a definition for the pure
virtual destructor

file:///home/overholt/C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI14_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 48

Item 14: have base classes have virtual dtors.

– When you
• try to delete a derived class object
• through a base class pointer

• and
• the base class has a nonvirtual destructor
• the results are undefined

– To avoid this problem you have only to make the destructor virtual
– If a class does not contain any virtual functions, that is often an

indication that it is not meant to be used as a base class

file:///home/overholt/C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI14_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 49

Item 15: Have operator= return *this

– C++ and the creator strived to ensure that user-defined types would
mimic the built-in types as closely as possible

– With built-in types, you can chain assignments together
int w, x, y, z;

w = x = y = z = 0;

– you should be able to chain together assignments for user-defined
types, too
String w, x, y, z;

w = x = y = z = “hello“;

w = (x = (y = (z = "Hello")));

w.operator=(x.operator=(y.operator=(z.operator=("Hello"))));

file:///home/overholt/C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI15_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 50

Item 15: Have operator= return *this

operator=
– return type of must be acceptable as an input to the function
– define that return a reference to their left-hand argument, *this

String& String::operator=(const String& rhs)

{

 ...

 return *this; // return reference

 // to left-hand object

}

file:///home/overholt/C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI15_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 51

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 52

Codan == CODe ANalysis

Tool Vendors
– create plugins containing end-user checkers and templates
– integrate command line static analysis tools into CDT

Software Architects, Process Enforcement
– create customized new checkers, based on templates

(no programming involved)
– To create problem profiles

Developer, Tester, Code Inspector
– check for errors as you type and have a quick way to fix them
– find bugs, security violations, API violations, coding standard

violations during code inspection and before code execution

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 53

Codan: Severity + Enablement on Workspace/Project

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 54

Codan: Launch Control

Run on demand from context menu Run with Build

Run as you type

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 55

Codan: Problem Markers

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 56

Codan: How the write own checkers

Internal Checker
– Problem scope is userdefine (you found e.g. a bug)
– Pick a model to find that problem e.g.

AST, Index, ControlFlow-, DataFlow-, Call-Graph
– Extend abstract checker for that model + implement check
– Create Extension for finding
– Create Autofix Action ?

External Checker
– Problem scope is defined by external tool
– Integrate output into eclipse concole/problems view (error parser)
– Offer Autofix Actions ?

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 57

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 58

Linticator

Project of IFS in Rapperswil, CH
– http://www.linticator.ch

Features
– Autosetup + Project Configuration
– Problems Overview
– Message Explanation View
– Quickfixes
– Supressions

http://www.linticator.ch/

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 59

Linticator: Project Configuration

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 60

Linticator: Overview

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 61

Linticator: Problems View + Message Explanation

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 62

Linticator: Quickfix

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 63

Linticator: Quickfix

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 64

Linticator: Supress Message

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 65

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 66

Includator

Project of IFS in Rapperswil, CH
– http://www.includator.ch

Features
– Find unused includes
– Directly include referenced files
– Organize includes
– Static code coverage
– Find unused files

http://www.includator.ch/

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 67

Includator: Find unused includes

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 68

Includator: Directly include referenced files

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 69

Includator: Organize includes

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 70

Includator: Static code coverage

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 71

Includator: Find unused files

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 72

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 73

More information

Eclipse CDT: http://eclipse.org/cdt

Linux Tools Project: http://www.eclipse.org/linuxtools

CUTE: http://www.cute-test.com/

Linticator: http://www.linticator.ch

Includator: http://includator.ch/

http://eclipse.org/cdt
http://www.eclipse.org/linuxtools
http://www.cute-test.com/
http://www.cute-test.com/
http://www.linticator.ch/
http://includator.ch/
http://includator.ch/

EclipseCon C/C++ Tutorial | © 2011 by Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 74

Conclusion

We hope you have enjoyed seeing some of the breadth and
power of a few Eclipse C/C++ tools. All communities of
developers writing these tools are active and always
interested in feedback. Any level of participation is greatly
appreciated and can be as easy as filing a bug, tweeting
about a cool feature, or writing a blog post about how you
set things up for your project.

Thank you.

	Slide 1
	Hands On With The C/C++ IDE
	Virtual Images: VirtualBox/VM-Ware with Fetora14
	Tutorial Setup 101
	Slide 5
	Slide 6
	Slide 7
	Exercises
	Slide 9
	Overview
	Slide 11
	Slide 12
	CUTE
	Vicious Circle: Testing – Stress
	Structure of a typical Unit Testing Framework
	Slide 16
	Using CUTE: it IS EASY !!!
	Collecting multiple Tests
	My first CUTE Test
	CUTE: Test Fixtures
	Slide 21
	Slide 22
	Slide 23
	TDD Example
	RE1 (++): Creation and Output of Strings
	RE2 (+): Common String operations
	RE3 (++): Support assignment, concatenation etc
	RE4 (): Additional operations
	Slide 29
	Slide 30
	Possible levels of Static Analysis:
	Critical areas of C (C Standard)
	Unspecified behaviour
	Empirically determined misbehaviour
	Slide 35
	Overview: EC++ 2nd Edition
	Support of Effective C++ in tools: e.g. g++ -WeffC++
	Constructor(s), Destructor, and Assignment Oper
	Item 11: cctor & operator= for classes with dny. memory
	Slide 40
	Slide 41
	Item 11: cctor & op= for classes with memory
	default and delete in C++0x
	Slide 44
	Item 14: have base classes have virtual dtors.
	Slide 46
	Slide 47
	Slide 48
	Item 15: Have operator= return *this
	Slide 50
	Slide 51
	Codan == CODe ANalysis
	Codan: Severity + Enablement on Workspace/Project
	Codan: Launch Control
	Codan: Problem Markers
	Codan: How the write own checkers
	Slide 57
	Linticator
	Linticator: Project Configuration
	Linticator: Overview
	Linticator: Problems View + Message Explanation
	Linticator: Quickfix
	Slide 63
	Linticator: Supress Message
	Slide 65
	Includator
	Includator: Find unused includes
	Includator: Directly include referenced files
	Includator: Organize includes
	Includator: Static code coverage
	Includator: Find unused files
	Slide 72
	More information
	Conclusion

