
1

Artificial Intelligence AI @ GDC

• Pathfinding

– Planning & A*

• Key ideas:

– Reduce search space

• Steering

– Following

– Flocking

– Grouping

– Separation

– Arrival

– Avoidance

• Collisions (pushing)

– Influence & unit circles

CSC404: Video Game Design © Steve Engels Slide 2 of 57

Funnel Algorithm

• Used to find quick paths
through levels.

• Assumes that level has
been decomposed into

large polygons.

• Iterate through polygon

corners to find narrowest
funnel through passage.

• Multiple levels with
different granularity

• Note: Always search for
straight-line path first ☺

CSC404: Video Game Design © Steve Engels Slide 3 of 57

Pathfinding: Portals

• Create spots in each
triangle edge that

pathfinders use as
intermediate points

between regions.

• Example:

– Playstation Move Heroes

CSC404: Video Game Design © Steve Engels Slide 4 of 57

2

Influence Maps

• Shows areas of control and
influence for players.

• Implications:

– Shows possible actions,

future moves.

– Defend where threatened,
attack where weakest.

– Emergent feigns and
feints, teamwork.

• Based off spatial function:

– Travel time, line-of-sight,
A* penalty, path speed,

target bias, weapon
choice, multipliers.

CSC404: Video Game Design © Steve Engels Slide 5 of 57

Influence Maps

CSC404: Video Game Design © Steve Engels Slide 6 of 57

CSC404: Video Game Design © Steve Engels Slide 7 of 57

Intelligent NPCs

• Flow

– Dynamic splines, dynamic lane
forming.

– Problems: twitching, piling up.

• Obstacle avoidance

– Case-sensitive steering behaviour.

– Social rules, self-organizing lanes.

• Action stations

– e.g. benches, ATMs.

– Stations “capture” NPCs in given
area, take over brains & animation.

– Once done, release NPC.

• More nuanced characters.

CSC404: Video Game Design © Steve Engels Slide 8 of 57

3

Architecture for AI

• AI algorithms are notorious short on resources.

– Cycles, memory

• AI components: analog to electrical components.

– Broad classification, key properties, defined I/O, interchangeable

• Class design

– Minimal classes, data lifetime, locality of reference.

• Multithreading

– Run planners in parallel (SIMD)

– Break down engine into modules (like entities)

• Perception, behaviour tree, pathfinder, targeting, animation, standard
movement (wolf/shark example).

• Physics, sensory, movement, behaviour, reasoning, animation.

– Maximize read-only data

CSC404: Video Game Design © Steve Engels Slide 9 of 57

AI Issues

• Nearest neighbour searches
are slow

• Player intent

– What does a click mean?

• Destructive interference
(conflicting goals)

• Grid resolution

– Grid elements < body size

• Hierarchical searching

– Problems with aiming for section, then searching in section.

• Randomness

– Can produce seemingly oppressive behaviour.

– Use Gaussians, filter out results (especially in near-win conditions).

CSC404: Video Game Design © Steve Engels Slide 10 of 57

CSC404: Video Game Design © Steve Engels Slide 11 of 57

Artificial Intelligence

• Artificial intelligence (AI) is the field of creating
intelligent behaviour in machines.

– “Intelligence” understood to be measures relative to humans.

– Labeled as gameplay from a developer’s point of view.

• So how do you measure intelligence?

– Combination of perception, processing and expression.

Turing Test:

CSC404: Video Game Design © Steve Engels Slide 12 of 57

Areas of Artificial Intelligence

• Perception

– Language

– Vision

• Processing

– Searching

– Planning

– Game Trees

• Learning

– Neural networks

4

CSC404: Video Game Design © Steve Engels Slide 13 of 57

AI Entities

• When creating artificial intelligence, the purpose is to
produce entities that are able to operate independent

of human direction

– Often these entities are called non-player characters (NPCs)

• These entities need to have the following properties:

– autonomy = needs no direct involvement to perform duties

– reactivity = must be able to perceive and react to its
environment

– proactivity = must exhibit goal-directed behaviour

– (sociability = interacts with other agents)

CSC404: Video Game Design © Steve Engels Slide 14 of 57

Intelligent Agents

• Agents = a software entity that exists in an
environment and acts on that environment based on

its perceptions and goals.

• Another possible agent example:

• NAVLAB (video)

CSC404: Video Game Design © Steve Engels Slide 15 of 57

Agent Environments

• Usually described in terms of “worlds”

– e.g. “Blocks world” = planning domain, moving blocks from
one configuration to another, given movement rules

– Steve’s favorite: Vaccuum-cleaner world

• environment: rooms with connections between the rooms and
dirt in zero or more rooms

• perceptions: current room, adjacent rooms, existence of dirt

• actions: suck, move, no-op

• goal: remove dirt from all rooms

C

B

A

C

BA

CSC404: Video Game Design © Steve Engels Slide 16 of 57

Multi-Agent Systems

• When multiple agents work towards a collective goal,
the rules for each agent change. It is no longer

sufficient for agents to act solely in their own interests

– Example: The Prisoner’s Dilemma

Agent A

Agent B

Confess ¬ Confess

C
on

fe
ss

A: 5 years
B: 5 years

A: 10 years
B: 1 year

A: 1 year
B: 10 years

A: 2 years
B: 2 years

What is the
optimal
strategy here?

5

CSC404: Video Game Design © Steve Engels Slide 17 of 57

Multi-Agent Applications

• Example: RoboCup

– robot soccer league

– international
competition

– also offers search &
rescue, RoboCup
junior, and a dance
competition

• Game example: Sports Games

– Game AI has to coordinate
multiple team members for
a common goal, not just for
their individual goals.

CSC404: Video Game Design © Steve Engels Slide 18 of 57

Perception

• Computer Vision

– To understand computer vision, it’s good to understand
human vision.

– The human retina is made up of rods and cones, which are
sensitive to three main image features:

• Edges

• Corners

• Movement

– When creating devices
with computer vision,
it’s good to incorporate
these ideas.

CSC404: Video Game Design © Steve Engels Slide 19 of 57

Perception

• Vision is like computer graphics, but in reverse.

– Start with overall image, and extract features that suggest
the underlying component objects.

– Edge detection algorithms scan the image, and produce
edges wherever a change in colours occurs between
neighbouring pixel values.

CSC404: Video Game Design © Steve Engels Slide 20 of 57

Perception

• To detect important features, scan image for edges
that match a particular template image.

– Template image might be scaled,
skewed and/or rotated.

• Examples:

– Face detection

– Object recognition

6

CSC404: Video Game Design © Steve Engels Slide 21 of 57

Computer Vision Example

• EyeToy

CSC404: Video Game Design © Steve Engels Slide 22 of 57

Perception

• Natural Language Processing

– Natural Language is the task of translating auditory input
into knowledge and back again.

• Perception stage (hard)

– speech recognition (speech signals � words)

– syntactic analysis (words � structure & roles)

– semantic processing (structure & roles � meaning)

• Generation stage (easier)

– language generation (meaning � words)

– speech synthesis (words � speech signals)

CSC404: Video Game Design © Steve Engels Slide 23 of 57

“How to wreck a nice beach”

• Suppose you had a speech signal. How would you
figure out what words the speech signal represents?

– Usually, each portion of speech signal matches with a basic
sound, called a phone, or the mental abstraction of that
sound, called a phoneme (e.g. /k/ , /a/ or /t/). Several

phones can match to a single phoneme, which are
considered allophones of each other.

– What happens when a phone doesn’t match clearly with a
particular phoneme? Is it sufficient to choose the closest
available match?

– Certain classes of phones can be easily mistaken for one
another

• e.g. fricatives (/f/ , /th/ , /v/), nasals (/m/ , /n/ , / ŋ/),
plosives (/p/ , /b/ , /t/,/d/ , /k/ , /g/)

CSC404: Video Game Design © Steve Engels Slide 24 of 57

Recognizing Phonemes

• To determine what sounds
are being spoken, one
must not only look at the
phoneme possibilities, but
also the context
– requires large sample of

labeled speech sounds to
calculate the phoneme
probabilities

• Requires:
– probability of phoneme,

given speech signal (S or σ)

– probability of phoneme,
given previous phoneme

7

CSC404: Video Game Design © Steve Engels Slide 25 of 57

Phoneme Sequences

• Example: “kick” or “cat”?

– From examining the individual probabilities alone, once
would assume that this signal corresponds to the word
“kick”, since the /i/ and /k/ phonemes are the most likely

– But if we consider the context…?

P(/k/) = 1 = ???P(/a/) = 0.45
P(/i/) = 0.55

P(/d/) = 0.3
P(/k/) = 0.4
P(/t/) = 0.3

Time

Amplitude

δ δ

CSC404: Video Game Design © Steve Engels Slide 26 of 57

Transition Probabilities

• A table of transition probabilities must be obtained
empirically from large labeled datasets

• Transition table is similar to a graph’s transition matrix

0.4 0.2 0.01 0.15 0.24

0.6 0 0.4 0 0

0.05 0.2 0.4 0.15 0.2

0.5 0 0.4 0 0.1

0.5 0 0.5 0 0

/a/

/d/

/i/

/k/

/t/

/a/ /d/ /i/ /k/ /t/(previous
phoneme)

(current phoneme)

/k/

/t/

/a/

/d/

/i/

CSC404: Video Game Design © Steve Engels Slide 27 of 57

Phoneme Sequences (cont’d)

• Looking for highest probability of phonemes given

speech signal

= P(/k/, /i/, /k/ | σ) � “kick”, for example

= P(/k/ | σ1)*P(/i/ | σ2)*P(/k/ | σ3)*P(/k/)*P(/i/ | /k/)*P(/k/ | /i/)

• So calculation of phoneme sequence probabilities
produces the following:

– P(“kick”) = (1)(0.4)(0.55)(0.15)(0.4) = 13.2%

– P(“kit”) = (1)(0.4)(0.55)(0.2)(0.3) = 13.2%

– P(“kid”) = (1)(0.4)(0.55)(0.2)(0.3) = 13.2%

– P(“kack”) = (1)(0.5)(0.45)(0.15)(0.4) = 13.5%

– P(“cad”) = (1)(0.5)(0.45)(0.2)(0.3) = 13.5%

– P(“cat”) = (1)(0.5)(0.45)(0.24)(0.3) = 16.2%

CSC404: Video Game Design © Steve Engels Slide 28 of 57

Syntactic Analysis

• Assuming that a sentence’s words have been
recognized correctly, how do you figure out what the

words mean?

• First, one needs to figure out the syntactic role of

each word in the phrase (also called tokens)
– Java analogy: the if keyword has a different meaning if it

comes at the beginning of a statement, or after the else
keyword, or within a set of quotes.

– The structure of a sentence and the placement of a word
within that structure reveals information about the role of
the word, and thus its meaning

8

CSC404: Video Game Design © Steve Engels Slide 29 of 57

Parsing Methods

• A parse tree illustrates how
a sentence can be broken
down into component parts,
until you reach the word level.

• Two basic approaches:
– Top-down = starting from the

S symbol (representing sentence in this context, not a speech
signal), search for a decomposition that results in a tree with
the sentence’s words as the leaves (each state represents a
possible decomposition of the original S symbol)

– Bottom-up = given the sequence of words, search for a
unification of adjacent components into non-terminals until a
single tree is created with S as the root. Unification takes place
by finding sequences of terminals or non-terminals that fit the
right-hand side of a grammar rule, and replacing that sequence
with the non-terminal on the left-hand side.

CSC404: Video Game Design © Steve Engels Slide 30 of 57

Limits of Syntactic Analysis

• Problems with ambiguous parses

– Example: Newspaper headlines

• “Eye drops off shelf”

• “Squad helps dog bite victim”

• “Dealers will hear car talk at noon”

• “Enraged cow injures farmer with ax”

• “Two sisters reunite after eighteen

years at checkout counter”

• Reference resolution (anaphora)

– More newspaper headlines

• “Grandmother of 8 makes hole in one”

• “Two Soviet ships collide - one dies”

CSC404: Video Game Design © Steve Engels Slide 31 of 57

Semantic Processing

• Parsing produces syntactic roles, but only produces a
limited intuition of the meaning of the sentence

• For that, the system must also obtain an understanding
of the sentence, based on the structure

• Semantic understanding is important for many
important natural language processing (NLP) problems

– interpreting commands

– question answering

– text summarization

– automatic translation

• Example: “The spirit is willing but the flesh is weak”
� “The wine is good but the meat has gone bad”

CSC404: Video Game Design © Steve Engels Slide 32 of 57

Basic Semantic Analyzers

• ELIZA (1966)

– Natural language-based “therapist”

– rearranges and substitutes certain phrases to emulate a
Rogerian psychotherapist

• WordNet (Princeton University)

– “semantic lexicon” for English

– contains ~150,000 words grouped into synonym categories,
with semantic definitions for each category

– parse tree disambiguates part-of-speech, helps define
deeper semantic context for that word

– problematic when distinguishing between two different
meanings for same part-of-speech � need semantic context

9

CSC404: Video Game Design © Steve Engels Slide 33 of 57

Natural Language Example

• Façade

CSC404: Video Game Design © Steve Engels Slide 34 of 57

Processing

• Searching

– Most gameplay algorithms are a form of search.

• Two main kinds of search domains:

– solitary games

– adversarial games

• In general, similar principles are used with each.

• Let’s start with the basic searching principles of

solitaire-style games…

CSC404: Video Game Design © Steve Engels Slide 35 of 57

Intro to Searching

• Searching is the act of exploring possible states in a
game or environment, to reach a specified goal

– State in a game of chess = a layout of pieces on a board

– State in an adventure game = your current position, where
you’re facing, what you’re carrying and what you’ve done

– State in a sports game = your current score, position,
direction and player condition

• The actions that allow you to move from one state to
another is called an operation

– Operations in chess = moving a piece

– Operations in an adventure game = moving your character,
picking up an item, using an item, changing your clothes

– Operations in sports game = move, throw, hit, jump, etc.

CSC404: Video Game Design © Steve Engels Slide 36 of 57

8-Puzzle Example
• States = layout of tiles

• Operations = movement of
a tile into the blank space
(or movement of the blank
space around the board)

• Exploring successive states

creates a search tree

1 2 3

4 6

7 5 8

Initial stateInitial stateInitial stateInitial state

1 2 3

4 6

7 5 8

1 3

4 2 6

7 5 8

1 2 3

4 6

7 5 8

1 2 3

4 5 6

7 8

1 2 3

4 6 8

7 5

1 2

4 6 3

7 5 8

1 3

4 2 6

7 5 8

1 3

4 2 6

7 5 8

2 3

1 4 6

7 5 81 2 3

7 4 6

5 8
1 2 3

4 5 6

7 8Goal stateGoal stateGoal stateGoal state

10

CSC404: Video Game Design © Steve Engels Slide 37 of 57

Breadth-first Search

• Breadth-first search expands the start state first, and
then expands successive states, one level at a time.

• Slow, but guaranteed to find the closest solution (if
one exists)

• Complexity analysis:

– Time: ~ bd

– Space: ~ bd

– (b is the branching factor,
the maximum number of
successor states possible.
d is the depth of the
solution in the search tree)

A

B C D

G H J L M

N O P

FE

Q R

I

S

K

Expanded nodes:

A B C D E F G H I J K L M N O P Q R S

CSC404: Video Game Design © Steve Engels Slide 38 of 57

Depth-first Search

• Depth-first search expands states down a single
branch of the search tree until the goal or a dead end

is reached (requires backtracking)

• Faster, but dangerous. Can explore far past solution

depth, and the first solution isn’t guaranteed to be
the best possible.

• Complexity analysis:

– Time: ~ bd

– Space: ~ b*d

– (d is the maximum
reasonable search depth)

A

B C D

G H J L M

N O P

FE

Q R

I

S

K

Expanded nodes:

A B E N O P F G C H I Q R J D K S L M

CSC404: Video Game Design © Steve Engels Slide 39 of 57

Planning Example

• F.E.A.R.

CSC404: Video Game Design © Steve Engels Slide 40 of 57

Heuristic Searches

• Also known as informed searches

• A heuristic is a “rule of thumb”
that allows an agent to estimate
the distance between a particular
state and the goal

• Heuristic function = estimated
cost of path from current state n
to goal state � h(n)
– e.g. straight-line heuristic: direct

distance between current position
and destination on a map

• Heuristic searches ignore path
cost information, and focus
instead on seeking the solution

11

CSC404: Video Game Design © Steve Engels Slide 41 of 57

Adversarial Game Playing

• Most game-playing involves
searching that takes place

in an adversarial domain

• Not concerned with

solitaire-like games that do
not involve an opponent

• Main question of game
theory: What is the best

move do make in the
current situation?

CSC404: Video Game Design © Steve Engels Slide 42 of 57

Assumptions

1. Domain can’t be exhaustively explored

2. No strictly dominating strategies

3. Both the player’s and opponent’s
strategies and positions are knowable

4. Both the player and the opponent are
rational

5. Strategies are comprised of heuristics
that can measure the “goodness” of
any position with a numerical result

6. Game searches are pursuing a single
goal

7. Zero-sum games being examined

What move by white
guarantees victory?

CSC404: Video Game Design © Steve Engels Slide 43 of 57

Game Example: Othello

• In Othello, rows of opponent
pieces are captured by

surrounding them with two
pieces of your own colour.

• As a result, positions on the
edges and corners are more

valuable than the middle.

• The value of an arrangement

of pieces can be the sum of
the weights of the player’s
pieces, minus the weight of

the opponent’s pieces.

8 4 4 4 4 4 4 8

4 1 1 1 1 1 1 4

4 1 1 1 1 1 1 4

4 1 1 1 1 1 1 4

4 1 1 1 1 1 1 4

4 1 1 1 1 1 1 4

4 1 1 1 1 1 1 4

8 4 4 4 4 4 4 8

CSC404: Video Game Design © Steve Engels Slide 44 of 57

Game Trees

• Game trees are used to reflect all two-player game
scenarios

– multi-player scenarios are possibly as well, and are an
extension of two-player games

• Same as search trees, but take the opponent’s goals
into account as well

• Game trees form the foundation for all intelligent
game-playing algorithms:

– Checkers: AI can beat world champion

– Othello/Reversi: Basic computer can beat best human player

– Go: Amateur human can beat best computer player

– Chess: Humans and computers still battling for top spot

12

CSC404: Video Game Design © Steve Engels Slide 45 of 57

Game Tree Example

• Tic-Tac-Toe:

…

current position circle’s move
(player)

x’s move
(opponent)

circle’s move
(player)

CSC404: Video Game Design © Steve Engels Slide 46 of 57

Branching in Game Trees

• Like any search tree, game tree branching can get
out-of-hand very quickly

– tic-tac-toe has 97,162 potential game positions to consider

– chess has an average branching factor b = 42

• two moves on each side produces over 3 million possible
positions!

• Solution:

– look limited moves ahead

– use good heuristic function

• keep extensive databases

– use minimax principle

– prune search tree

CSC404: Video Game Design © Steve Engels Slide 47 of 57

Minimax Principle

• Invented by von Neumann and Morgenstern in 1944 as part of
game theory.

• Involves growing a game tree to the search horizon.
– The search horizon is defined by the number of moves the

computer looks ahead. If the computer look n moves ahead for
itself and n – 1 moves for the opponent, we say the computer is
playing 2n – 1 ply.

• Within the tree bounded by the search horizon, apply the
heuristic function to all leaves to calculate the utility of the
position at each leaf.

• Idea behind minimax is that the AI player tries to maximize the
utility while the opponent tries to minimize it.

• Note:
– Leaf states are not necessarily end states

– End states do not necessarily satisfy the goal conditions

– Heuristic values at end states can vary

CSC404: Video Game Design © Steve Engels Slide 48 of 57

Minimax Example

• From root position, what branch should the AI player pursue to
achieve the highest eventual score?
– Note: heuristic values are from the player’s perspective, not the

opponent’s. It is assumed that the opponent wishes to minimize
the player’s score at each min stage.

2725 20327 8642 9

99

5

86

search horizon

max

min

max

13

CSC404: Video Game Design © Steve Engels Slide 49 of 57

Minimax Example (cont’d)

• Minimax algorithm:

– from bottom level to top, fill in node with either the maximum of its
children (on max levels) or the minimum of its children (on min
levels)

2725 20327 8642 9

99

5

86

search horizon

max

min

max

42

42 59

8642 5329

� Best path is left-most branch

CSC404: Video Game Design © Steve Engels Slide 50 of 57

Minimax & Pruning

• Assumptions:

– Heuristic is known by both player and opponent

– both will make the most sensible move, given their goals

• Minimax alone will not solve the search problem

– need reduction in search space in order to increase chances
of arriving at the goal

• Pruning is a major technique used to reduce the
branch density and speed up the search

– e.g. prior knowledge about certain positions can allow any
further positions to be discounted

• αβ-pruning can cut down the number of nodes
searched without losing information

CSC404: Video Game Design © Steve Engels Slide 51 of 57

αααα-Pruning

• When exploring nodes in game tree, assumption is a
limited depth-first search, from left to right.

• α-pruning keys on the max level, and discards any
branches that won’t affect the max level value.

• Example:

44

40 ?

max

min≤ 40

≥ 44

CSC404: Video Game Design © Steve Engels Slide 52 of 57

ββββ-Pruning

• β-pruning is the same as α-pruning, only from the

perspective of the min levels

44

68 ?

min

max≥ 68

≤ 44

14

CSC404: Video Game Design © Steve Engels Slide 53 of 57

αβαβαβαβ-Pruning (cont’d)

• Before a node and its subtree can be discarded, the
algorithm requires tentative values for parent and

grandparent nodes in tree

• Complexity reduction:

– αβ-pruning reduces searching
to ~n½ states

– search is able to explore twice
the depth of a regular search

• very helpful with real-time
game applications

CSC404: Video Game Design © Steve Engels Slide 54 of 57

Search Enhancements

• Other techniques exist for speeding up search through
game space

• Transposition tables

– tables that record past positions, to avoid searching
previously-explored subtrees

– also used to eliminate subtrees that are permutations of other
positions

• e.g. Tic-tac-toe: initial branching reduces from b=9 to b=3

– Disadvantage: most effective with iterative deepening search,
which undermines use of αβ-pruning

– must be careful not to equate two states whose positions are
similar but situations are different

• e.g. castling in chess, inventory in first-person shooters

CSC404: Video Game Design © Steve Engels Slide 55 of 57

Search Enhancements (cont’d)

• Opening book

– games with set initial positions tend to have predetermined
patterns (i.e. chess)

– opening books reduce the search space in initial situations by
performing one of a set of opening actions

• Endgames / Killer moves

– certain situations that match recognized patterns can trigger
a series of actions that guarantee an increase in the utility of
the game state

– endgames in particular lead to outcomes that guarantee a win

• Variable depth

– the search horizon can be adjusted if a particular path
requires more exploration (i.e. to realize a sub-goal)

CSC404: Video Game Design © Steve Engels Slide 56 of 57

Computer Chess Ratings Throughout History

0

500

1000

1500

2000

2500

3000

1940 1950 1960 1970 1980 1990 2000

Year

In
te

rn
at

io
n

al
 R

at
in

g

f irs t
electronic
computer

1s t specs for
chess program
(Turing)

1st documented
defeat of
human player

1st chess
program
(Turing)

b
eg

in
n

er
am

atu
er

exp
ert

N
M

IM
/G

M
to

p2002 top ranked chess players: Kasparov (2838), Kramnik (2809), Anand (2757)

MacHACK V I

Chess 4.5
Belle

Cray Blitz

HITECH

Deep Thought/Blue

Game Tree Example

15

CSC404: Video Game Design © Steve Engels Slide 57 of 57

Learning

• Neural networks

– Most rationalist approaches to AI involve modeling cognitive
processes in human behaviour.

– The connectionist approach takes this one step further,
creating models that are based on the activity of neurons in
the brain

CSC404: Video Game Design © Steve Engels Slide 58 of 57

Biological Neural Cells

• Each neuron is composed of three parts:
– dendrites: receive electrical signals

from other neurons

– axon: transmits electrical pulse to other
neurons

– cell body: decides what kind of electrical
pulse to transmit, given input signals

• The body’s nervous system and the
brain’s higher functions are composed
of networks of these neurons
– biological neural network

• Gave rise to computational models of
these networks
– artificial neural networks

CSC404: Video Game Design © Steve Engels Slide 59 of 57

Artificial Neural Networks

• Artificial neural networks (or simply neural networks)
are made up of a series of nodes that represent the

neurons of the brain

– Each node (or unit) is connected to other nodes through
directed links

– Each node is defined by its input function, which sums the
activations energies from other nodes, and an activation
function that produces an output value for this node, based
on the result of the input function.

CSC404: Video Game Design © Steve Engels Slide 60 of 57

Neural Network Structure

• Every neural network has three layers:

– input layer: the nodes that record the input values for the
training case, one node per input value (no processing).

– output layer: the nodes whose activation functions produce
the output values for the neural network.

– hidden layer(s): the nodes between the input and output
layers.

• Prime time analogy: House M.D.
– House has team of residents.

– Residents examine many symptoms.

– When symptoms occur, those
“activate” certain residents.

– House diagnoses based on residents.

16

CSC404: Video Game Design © Steve Engels Slide 61 of 57

Hidden Layer “Rules”

• Hidden layers of neural
networks store internal
“knowledge”, used in
processing the output.

• Rules of Thumb:
– only one layer is really

necessary

– no universal rule for number
of nodes in the hidden layer,
except that more nodes implies more detail in output
distribution � potential for overfitting, in sparse data cases

– some problems require no hidden layer (i.e. linear
separation problems)

• use single-layer feed-forward neural network � perceptron

CSC404: Video Game Design © Steve Engels Slide 62 of 57

Perceptrons

• Perceptrons can differentiate different sections in the
input data, as long as they are linearly separable

– similar to support vector machines

• How does learning occur within

the network?

– want to minimize the squared error
of the neural network

– y is the true output that should be
expected, given the input x, weights
w and actual output hw(x)

E = ½Err2 ≡ ½(y-hw(x))2

CSC404: Video Game Design © Steve Engels Slide 63 of 57

Perceptron Learning

• In order to minimize this error, find the
difference between the expected and actual
output, and use that to adjust the weights that
affect that output

• Using House analogy again:

– If House is right, he thinks more highly of the
residents he listened to, and tells them so. In

turn, they think more highly of the symptoms
they considered in their diagnosis.

– If House is wrong, he gives less weight to the
residents he listened to, and they in turn give
less weight to the symptoms they considered.

– This continues until steady-state is achieved.

• This is called the back-propagation algorithm.

CSC404: Video Game Design © Steve Engels Slide 64 of 57

Multilayer Learning

• Weight adjustment in perceptron is:

• This is awful math. Don’t worry about it until third
year.

Wj Wj + α • Err • g’(in) • xj

17

CSC404: Video Game Design © Steve Engels Slide 65 of 57

Qualities of Neural Networks

• Advantages:
– Biological basis

• learning models human learning techniques; more sound than other
contrived techniques

– Auto-organization
• internal representation of knowledge is not outlined or affected by

human operators

– Fault tolerance
• partial destruction of network structure is compensated for by parallel

operation of remaining network

– Flexibility
• learned model can work on unseen data

– Speed
• once model is trained, responses are obtained in real-time

• Disadvantages
– Arcane quality

• can’t inspect internal workings to determine what it learned, since
hidden state values don’t mean anything at a higher level

CSC404: Video Game Design © Steve Engels Slide 66 of 57

Learning Example

• Black & White

