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Artificial Intelligence AI @ GDC

• Pathfinding

– Planning & A*

• Key ideas:

– Reduce search space

• Steering

– Following

– Flocking

– Grouping

– Separation

– Arrival

– Avoidance

• Collisions (pushing)

– Influence & unit circles
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Funnel Algorithm

• Used to find quick paths 
through levels.

• Assumes that level has 
been decomposed into 

large polygons.

• Iterate through polygon 

corners to find narrowest 
funnel through passage.

• Multiple levels with 
different granularity

• Note: Always search for 
straight-line path first ☺
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Pathfinding: Portals

• Create spots in each 
triangle edge that 

pathfinders use as 
intermediate points 

between regions.

• Example:

– Playstation Move Heroes
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Influence Maps

• Shows areas of control and 
influence for players.

• Implications:

– Shows possible actions, 

future moves.

– Defend where threatened, 
attack where weakest.

– Emergent feigns and 
feints, teamwork.

• Based off spatial function:

– Travel time, line-of-sight, 
A* penalty, path speed, 

target bias, weapon 
choice, multipliers.
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Influence Maps
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Intelligent NPCs

• Flow

– Dynamic splines, dynamic lane 
forming.

– Problems: twitching, piling up.

• Obstacle avoidance

– Case-sensitive steering behaviour.

– Social rules, self-organizing lanes.

• Action stations

– e.g. benches, ATMs.

– Stations “capture” NPCs in given 
area, take over brains & animation.

– Once done, release NPC.

• More nuanced characters.
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Architecture for AI

• AI algorithms are notorious short on resources.

– Cycles, memory

• AI components: analog to electrical components.

– Broad classification, key properties, defined I/O, interchangeable

• Class design

– Minimal classes, data lifetime, locality of reference.

• Multithreading

– Run planners in parallel (SIMD)

– Break down engine into modules (like entities)

• Perception, behaviour tree, pathfinder, targeting, animation, standard 
movement (wolf/shark example).

• Physics, sensory, movement, behaviour, reasoning, animation.

– Maximize read-only data

CSC404: Video Game Design © Steve Engels Slide 9 of 57

AI Issues

• Nearest neighbour searches 
are slow

• Player intent

– What does a click mean?

• Destructive interference 
(conflicting goals)

• Grid resolution

– Grid elements < body size

• Hierarchical searching

– Problems with aiming for section, then searching in section.

• Randomness

– Can produce seemingly oppressive behaviour.

– Use Gaussians, filter out results (especially in near-win conditions).

CSC404: Video Game Design © Steve Engels Slide 10 of 57

CSC404: Video Game Design © Steve Engels Slide 11 of 57

Artificial Intelligence

• Artificial intelligence (AI) is the field of creating 
intelligent behaviour in machines.

– “Intelligence” understood to be measures relative to humans.

– Labeled as gameplay from a developer’s point of view.

• So how do you measure intelligence?

– Combination of perception, processing and expression.

Turing Test:
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Areas of Artificial Intelligence

• Perception

– Language

– Vision

• Processing

– Searching

– Planning

– Game Trees

• Learning

– Neural networks
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AI Entities

• When creating artificial intelligence, the purpose is to 
produce entities that are able to operate independent 

of human direction

– Often these entities are called non-player characters (NPCs)

• These entities need to have the following properties:

– autonomy = needs no direct involvement to perform duties

– reactivity = must be able to perceive and react to its 
environment

– proactivity = must exhibit goal-directed behaviour

– (sociability = interacts with other agents)
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Intelligent Agents

• Agents = a software entity that exists in an 
environment and acts on that environment based on 

its perceptions and goals.

• Another possible agent example:

• NAVLAB (video)
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Agent Environments

• Usually described in terms of “worlds”

– e.g. “Blocks world” = planning domain, moving blocks from 
one configuration to another, given movement rules

– Steve’s favorite: Vaccuum-cleaner world

• environment: rooms with connections between the rooms and 
dirt in zero or more rooms

• perceptions: current room, adjacent rooms, existence of dirt

• actions: suck, move, no-op

• goal: remove dirt from all rooms

C

B

A

C

BA
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Multi-Agent Systems

• When multiple agents work towards a collective goal, 
the rules for each agent change. It is no longer 

sufficient for agents to act solely in their own interests

– Example: The Prisoner’s Dilemma

Agent A

Agent B

Confess ¬ Confess

C
on

fe
ss

A: 5 years
B: 5 years

A: 10 years
B: 1 year

A: 1 year
B: 10 years

A: 2 years
B: 2 years

What is the 
optimal 
strategy here?
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Multi-Agent Applications

• Example: RoboCup

– robot soccer league

– international 
competition

– also offers search &
rescue, RoboCup
junior, and a dance
competition

• Game example: Sports Games

– Game AI has to coordinate 
multiple team members for 
a common goal, not just for
their individual goals.
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Perception

• Computer Vision

– To understand computer vision, it’s good to understand 
human vision.

– The human retina is made up of rods and cones, which are 
sensitive to three main image features:

• Edges

• Corners

• Movement

– When creating devices 
with computer vision, 
it’s good to incorporate 
these ideas.
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Perception

• Vision is like computer graphics, but in reverse.

– Start with overall image, and extract features that suggest 
the underlying component objects.

– Edge detection algorithms scan the image, and produce 
edges wherever a change in colours occurs between 
neighbouring pixel values.
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Perception

• To detect important features, scan image for edges 
that match a particular template image.

– Template image might be scaled, 
skewed and/or rotated.

• Examples:

– Face detection

– Object recognition
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Computer Vision Example

• EyeToy
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Perception

• Natural Language Processing

– Natural Language is the task of translating auditory input 
into knowledge and back again.

• Perception stage (hard)

– speech recognition (speech signals � words)

– syntactic analysis (words � structure & roles)

– semantic processing (structure & roles � meaning)

• Generation stage (easier)

– language generation (meaning � words)

– speech synthesis (words � speech signals)
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“How to wreck a nice beach”

• Suppose you had a speech signal. How would you 
figure out what words the speech signal represents? 

– Usually, each portion of speech signal matches with a basic 
sound, called a phone, or the mental abstraction of that 
sound, called a phoneme (e.g. /k/ , /a/ or /t/ ). Several 

phones can match to a single phoneme, which are 
considered allophones of each other.

– What happens when a phone doesn’t match clearly with a 
particular phoneme? Is it sufficient to choose the closest 
available match?

– Certain classes of phones can be easily mistaken for one 
another

• e.g. fricatives (/f/ , /th/ , /v/ ), nasals (/m/ , /n/ , / ŋ/ ), 
plosives (/p/ , /b/ , /t/,/d/ , /k/ , /g/ )
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Recognizing Phonemes

• To determine what sounds 
are being spoken, one 
must not only look at the 
phoneme possibilities, but 
also the context
– requires large sample of 

labeled speech sounds to 
calculate the phoneme 
probabilities

• Requires:
– probability of phoneme, 

given speech signal (S or σ)

– probability of phoneme, 
given previous phoneme
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Phoneme Sequences

• Example: “kick” or “cat”?

– From examining the individual probabilities alone, once 
would assume that this signal corresponds to the word 
“kick”, since the /i/ and /k/ phonemes are the most likely

– But if we consider the context…?

P(/k/) = 1 = ???P(/a/) = 0.45
P(/i/) = 0.55

P(/d/) = 0.3
P(/k/) = 0.4
P(/t/) = 0.3

Time

Amplitude

δ δ
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Transition Probabilities

• A table of transition probabilities must be obtained 
empirically from large labeled datasets

• Transition table is similar to a graph’s transition matrix

0.4 0.2 0.01 0.15 0.24

0.6 0 0.4 0 0

0.05 0.2 0.4 0.15 0.2

0.5 0 0.4 0 0.1

0.5 0 0.5 0 0

/a/

/d/

/i/

/k/

/t/

/a/  /d/  /i/  /k/  /t/(previous
phoneme)

(current phoneme)

/k/

/t/

/a/

/d/

/i/
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Phoneme Sequences (cont’d)

• Looking for highest probability of phonemes given 

speech signal

= P(/k/, /i/, /k/ | σ) � “kick”, for example

= P(/k/ | σ1)*P(/i/ | σ2)*P(/k/ | σ3)*P(/k/)*P(/i/ | /k/)*P(/k/ | /i/)

• So calculation of phoneme sequence probabilities 
produces the following:

– P(“kick”) = (1)(0.4)(0.55)(0.15)(0.4) = 13.2%

– P(“kit”) = (1)(0.4)(0.55)(0.2)(0.3) = 13.2%

– P(“kid”) = (1)(0.4)(0.55)(0.2)(0.3) = 13.2%

– P(“kack”) = (1)(0.5)(0.45)(0.15)(0.4) = 13.5%

– P(“cad”) = (1)(0.5)(0.45)(0.2)(0.3) = 13.5%

– P(“cat”) = (1)(0.5)(0.45)(0.24)(0.3) = 16.2%
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Syntactic Analysis

• Assuming that a sentence’s words have been 
recognized correctly, how do you figure out what the 

words mean?

• First, one needs to figure out the syntactic role of 

each word in the phrase (also called tokens)
– Java analogy: the if keyword has a different meaning if it 

comes at the beginning of a statement, or after the else
keyword, or within a set of quotes.

– The structure of a sentence and the placement of a word 
within that structure reveals information about the role of 
the word, and thus its meaning
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Parsing Methods

• A parse tree illustrates how
a sentence can be broken  
down into component parts,
until you reach the word level.

• Two basic approaches:
– Top-down = starting from the 

S symbol (representing sentence in this context, not a speech 
signal), search for a decomposition that results in a tree with 
the sentence’s words as the leaves (each state represents a 
possible decomposition of the original S symbol)

– Bottom-up = given the sequence of words, search for a 
unification of adjacent components into non-terminals until a 
single tree is created with S as the root. Unification takes place 
by finding sequences of terminals or non-terminals that fit the 
right-hand side of a grammar rule, and replacing that sequence 
with the non-terminal on the left-hand side.
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Limits of Syntactic Analysis

• Problems with ambiguous parses

– Example: Newspaper headlines

• “Eye drops off shelf”

• “Squad helps dog bite victim”

• “Dealers will hear car talk at noon”

• “Enraged cow injures farmer with ax”

• “Two sisters reunite after eighteen 

years at checkout counter”

• Reference resolution (anaphora)

– More newspaper headlines

• “Grandmother of 8 makes hole in one”

• “Two Soviet ships collide - one dies”
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Semantic Processing

• Parsing produces syntactic roles, but only produces a 
limited intuition of the meaning of the sentence

• For that, the system must also obtain an understanding 
of the sentence, based on the structure

• Semantic understanding is important for many 
important natural language processing (NLP) problems

– interpreting commands

– question answering

– text summarization

– automatic translation

• Example: “The spirit is willing but the flesh is weak”
� “The wine is good but the meat has gone bad”
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Basic Semantic Analyzers

• ELIZA (1966)

– Natural language-based “therapist”

– rearranges and substitutes certain phrases to emulate a 
Rogerian psychotherapist

• WordNet (Princeton University)

– “semantic lexicon” for English

– contains ~150,000 words grouped into synonym categories, 
with semantic definitions for each category

– parse tree disambiguates part-of-speech, helps define 
deeper semantic context for that word

– problematic when distinguishing between two different 
meanings for same part-of-speech � need semantic context
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Natural Language Example

• Façade
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Processing

• Searching

– Most gameplay algorithms are a form of search.

• Two main kinds of search domains:

– solitary games

– adversarial games

• In general, similar principles are used with each.

• Let’s start with the basic searching principles of 

solitaire-style games…
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Intro to Searching

• Searching is the act of exploring possible states in a 
game or environment, to reach a specified goal

– State in a game of chess = a layout of pieces on a board

– State in an adventure game = your current position, where 
you’re facing, what you’re carrying and what you’ve done

– State in a sports game = your current score, position, 
direction and player condition

• The actions that allow you to move from one state to 
another is called an operation

– Operations in chess = moving a piece

– Operations in an adventure game = moving your character, 
picking up an item, using an item, changing your clothes

– Operations in sports game = move, throw, hit, jump, etc.
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8-Puzzle Example
• States = layout of tiles

• Operations = movement of 
a tile into the blank space 
(or movement of the blank 
space around the board)

• Exploring successive states 

creates a search tree

1 2 3

4 6

7 5 8

Initial stateInitial stateInitial stateInitial state

1 2 3

4 6

7 5 8

1 3

4 2 6

7 5 8

1 2 3

4 6

7 5 8

1 2 3

4 5 6

7 8

1 2 3

4 6 8

7 5

1 2

4 6 3

7 5 8

1 3

4 2 6

7 5 8

1 3

4 2 6

7 5 8

2 3

1 4 6

7 5 81 2 3

7 4 6

5 8
1 2 3

4 5 6

7 8Goal stateGoal stateGoal stateGoal state
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Breadth-first Search

• Breadth-first search expands the start state first, and 
then expands successive states, one level at a time.

• Slow, but guaranteed to find the closest solution (if 
one exists)

• Complexity analysis:

– Time: ~ bd

– Space: ~ bd

– (b is the branching factor, 
the maximum number of 
successor states possible. 
d is the depth of the 
solution in the search tree)

A

B C D

G H J L M

N O P

FE

Q R

I

S

K

Expanded nodes:

A B C D E F G H I J K L M N O P Q R S
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Depth-first Search

• Depth-first search expands states down a single 
branch of the search tree until the goal or a dead end 

is reached (requires backtracking)

• Faster, but dangerous. Can explore far past solution 

depth, and the first solution isn’t guaranteed to be 
the best possible.

• Complexity analysis:

– Time:  ~ bd

– Space:  ~ b*d

– (d is the maximum
reasonable search depth)

A

B C D

G H J L M

N O P

FE

Q R

I

S

K

Expanded nodes:

A   B E N O P F G   C H I Q R   J D K S L M
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Planning Example

• F.E.A.R.
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Heuristic Searches

• Also known as informed searches

• A heuristic is a “rule of thumb” 
that allows an agent to estimate 
the distance between a particular 
state and the goal

• Heuristic function = estimated 
cost of path from current state n
to goal state � h(n)
– e.g. straight-line heuristic: direct 

distance between current position 
and destination on a map

• Heuristic searches ignore path 
cost information, and focus 
instead on seeking the solution 
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Adversarial Game Playing

• Most game-playing involves 
searching that takes place 

in an adversarial domain

• Not concerned with 

solitaire-like games that do 
not involve an opponent

• Main question of game 
theory: What is the best 

move do make in the 
current situation?

CSC404: Video Game Design © Steve Engels Slide 42 of 57

Assumptions

1. Domain can’t be exhaustively explored

2. No strictly dominating strategies

3. Both the player’s and opponent’s 
strategies and positions are knowable

4. Both the player and the opponent are 
rational

5. Strategies are comprised of heuristics 
that can measure the “goodness” of 
any position with a numerical result

6. Game searches are pursuing a single 
goal

7. Zero-sum games being examined

What move by white 
guarantees victory?
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Game Example: Othello

• In Othello, rows of opponent 
pieces are captured by 

surrounding them with two
pieces of your own colour.

• As a result, positions on the
edges and corners are more

valuable than the middle.

• The value of an arrangement

of pieces can be the sum of
the weights of the player’s 
pieces, minus the weight of 

the opponent’s pieces.

8 4 4 4 4 4 4 8

4 1 1 1 1 1 1 4

4 1 1 1 1 1 1 4

4 1 1 1 1 1 1 4

4 1 1 1 1 1 1 4

4 1 1 1 1 1 1 4

4 1 1 1 1 1 1 4

8 4 4 4 4 4 4 8
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Game Trees

• Game trees are used to reflect all two-player game 
scenarios 

– multi-player scenarios are possibly as well, and are an 
extension of two-player games

• Same as search trees, but take the opponent’s goals 
into account as well

• Game trees form the foundation for all intelligent 
game-playing algorithms:

– Checkers: AI can beat world champion

– Othello/Reversi: Basic computer can beat best human player

– Go: Amateur human can beat best computer player

– Chess: Humans and computers still battling for top spot
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Game Tree Example

• Tic-Tac-Toe:

…

current position circle’s move
(player)

x’s move
(opponent)

circle’s move
(player)
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Branching in Game Trees

• Like any search tree, game tree branching can get 
out-of-hand very quickly

– tic-tac-toe has 97,162 potential game positions to consider

– chess has an average branching factor  b = 42

• two moves on each side produces over 3 million possible 
positions!

• Solution:

– look limited moves ahead

– use good heuristic function

• keep extensive databases

– use minimax principle

– prune search tree
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Minimax Principle

• Invented by von Neumann and Morgenstern in 1944 as part of 
game theory.

• Involves growing a game tree to the search horizon.
– The search horizon is defined by the number of moves the 

computer looks ahead.  If the computer look n moves ahead for 
itself and n – 1 moves for the opponent, we say the computer is 
playing 2n – 1 ply.

• Within the tree bounded by the search horizon, apply the 
heuristic function to all leaves to calculate the utility of the 
position at each leaf.

• Idea behind minimax is that the AI player tries to maximize the 
utility while the opponent tries to minimize it.

• Note:
– Leaf states are not necessarily end states

– End states do not necessarily satisfy the goal conditions

– Heuristic values at end states can vary

CSC404: Video Game Design © Steve Engels Slide 48 of 57

Minimax Example

• From root position, what branch should the AI player pursue to 
achieve the highest eventual score?
– Note: heuristic values are from the player’s perspective, not the 

opponent’s. It is assumed that the opponent wishes to minimize 
the player’s score at each min stage.

2725 20327 8642 9

99

5

86

search horizon

max

min

max
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Minimax Example (cont’d)

• Minimax algorithm:

– from bottom level to top, fill in node with either the maximum of its 
children (on max levels) or the minimum of its children (on min 
levels)

2725 20327 8642 9

99

5

86

search horizon

max

min

max

42

42 59

8642 5329

� Best path is left-most branch

CSC404: Video Game Design © Steve Engels Slide 50 of 57

Minimax & Pruning

• Assumptions:

– Heuristic is known by both player and opponent

– both will make the most sensible move, given their goals

• Minimax alone will not solve the search problem

– need reduction in search space in order to increase chances 
of arriving at the goal

• Pruning is a major technique used to reduce the 
branch density and speed up the search

– e.g. prior knowledge about certain positions can allow any 
further positions to be discounted

• αβ-pruning can cut down the number of nodes 
searched without losing information
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αααα-Pruning

• When exploring nodes in game tree, assumption is a 
limited depth-first search, from left to right.

• α-pruning keys on the max level, and discards any 
branches that won’t affect the max level value.

• Example:

44

40 ?

max

min≤ 40

≥ 44
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ββββ-Pruning

• β-pruning is the same as α-pruning, only from the 

perspective of the min levels

44

68 ?

min

max≥ 68

≤ 44
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αβαβαβαβ-Pruning (cont’d)

• Before a node and its subtree can be discarded, the 
algorithm requires tentative values for parent and 

grandparent nodes in tree

• Complexity reduction:

– αβ-pruning reduces searching 
to ~n½ states 

– search is able to explore twice 
the depth of a regular search

• very helpful with real-time 
game applications
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Search Enhancements

• Other techniques exist for speeding up search through 
game space

• Transposition tables

– tables that record past positions, to avoid searching 
previously-explored subtrees

– also used to eliminate subtrees that are permutations of other 
positions

• e.g. Tic-tac-toe: initial branching reduces from b=9 to b=3

– Disadvantage: most effective with iterative deepening search, 
which undermines use of αβ-pruning

– must be careful not to equate two states whose positions are 
similar but situations are different

• e.g. castling in chess, inventory in first-person shooters
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Search Enhancements (cont’d)

• Opening book

– games with set initial positions tend to have predetermined 
patterns (i.e. chess)

– opening books reduce the search space in initial situations by 
performing one of a set of opening actions

• Endgames / Killer moves

– certain situations that match recognized patterns can trigger 
a series of actions that guarantee an increase in the utility of 
the game state

– endgames in particular lead to outcomes that guarantee a win

• Variable depth

– the search horizon can be adjusted if a particular path 
requires more exploration (i.e. to realize a sub-goal)
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Computer Chess Ratings Throughout History
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Learning

• Neural networks

– Most rationalist approaches to AI involve modeling cognitive 
processes in human behaviour.

– The connectionist approach takes this one step further, 
creating models that are based on the activity of neurons in 
the brain
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Biological Neural Cells

• Each neuron is composed of three parts:
– dendrites: receive electrical signals

from other neurons

– axon: transmits electrical pulse to other 
neurons

– cell body: decides what kind of electrical
pulse to transmit, given input signals

• The body’s nervous system and the
brain’s higher functions are composed 
of networks of these neurons
– biological neural network

• Gave rise to computational models of 
these networks
– artificial neural networks
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Artificial Neural Networks

• Artificial neural networks (or simply neural networks) 
are made up of a series of nodes that represent the 

neurons of the brain

– Each node (or unit) is connected to other nodes through 
directed links

– Each node is defined by its input function, which sums the 
activations energies from other nodes, and an activation 
function that produces an output value for this node, based 
on the result of the input function.
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Neural Network Structure

• Every neural network has three layers:

– input layer: the nodes that record the input values for the 
training case, one node per input value (no processing).

– output layer: the nodes whose activation functions produce 
the output values for the neural network.

– hidden layer(s): the nodes between the input and output 
layers.

• Prime time analogy: House M.D.
– House has team of residents.

– Residents examine many symptoms.

– When symptoms occur, those 
“activate” certain residents.

– House diagnoses based on residents.
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Hidden Layer “Rules”

• Hidden layers of neural
networks store internal 
“knowledge”, used in 
processing the output.

• Rules of Thumb:
– only one layer is really 

necessary

– no universal rule for number
of nodes in the hidden layer,
except that more nodes implies more detail in output 
distribution � potential for overfitting, in sparse data cases

– some problems require no hidden layer (i.e. linear 
separation problems)

• use single-layer feed-forward neural network � perceptron
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Perceptrons

• Perceptrons can differentiate different sections in the 
input data, as long as they are linearly separable

– similar to support vector machines

• How does learning occur within

the network?

– want to minimize the squared error
of the neural network

– y is the true output that should be
expected, given the input x, weights
w and actual output hw(x)

E = ½Err2 ≡ ½(y-hw(x))2
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Perceptron Learning

• In order to minimize this error, find the 
difference between the expected and actual 
output, and use that to adjust the weights that 
affect that output

• Using House analogy again:

– If House is right, he thinks more highly of the 
residents he listened to, and tells them so. In 

turn, they think more highly of the symptoms 
they considered in their diagnosis.

– If House is wrong, he gives less weight to the 
residents he listened to, and they in turn give 
less weight to the symptoms they considered.

– This continues until steady-state is achieved.

• This is called the back-propagation algorithm.
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Multilayer Learning

• Weight adjustment in perceptron is:

• This is awful math. Don’t worry about it until third 
year.

Wj  Wj + α • Err • g’(in) • xj
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Qualities of Neural Networks

• Advantages:
– Biological basis

• learning models human learning techniques; more sound than other 
contrived techniques

– Auto-organization
• internal representation of knowledge is not outlined or affected by 

human operators

– Fault tolerance
• partial destruction of network structure is compensated for by parallel 

operation of remaining network

– Flexibility
• learned model can work on unseen data

– Speed
• once model is trained, responses are obtained in real-time

• Disadvantages
– Arcane quality

• can’t inspect internal workings to determine what it learned, since 
hidden state values don’t mean anything at a higher level
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Learning Example

• Black & White


